
【每周一期-数据蒋堂】SQL的有序分组
我们知道,SQL延用了数学上的无序集合概念,所以SQL的分组并不关注过待分组集合中成员的次序。我们在前面讨论过的等值分组和非等值分组,也都没有关注过这个问题,分组规则都是建立在成员取值本身上。但如果我们要拓展SQL,以有序集合为考虑对象时,那就必须考虑成员次序对分组的影响了,而且,现实业务中有大量的有序分组应用场景。
一个简单的例子:将一个班的学生平均分成三份(假定人数能被3整除)。按我们在前面所说的分组定义,这也可以看成是一种分组,但这个运算在SQL中却很难写出来,因为分组依据和成员取值没有关系。
如果使用我们在前面讲有序遍历语法时的#符号,这个问题就很容易解决了。
A.group( (#-1)*3\A.len() ) // 按序号分成前1/3,中1/3,后1/3
A.group( (#-1)%3 ) // 还可以按序号每三个中取一个构成分组子集
用SQL实现这个运算就麻烦很多,需要先用子查询造出一个序号,然后再执行类似的分组规则。
上面这个例子中其实还没有真正关注成员的次序,只是说明了序号的作用,待分组集合的成员是其它次序时也可以得到可用的结果。
我们再看更多例子。
处理文本日志时,有些日志的基本单位不是1行,而可能是3行,即每个事件总是写出3行文本,这并不是多罕见的情况。对付这种日志时,就需要把文本每3行拆成一个分组子集,然后针对每个分组再进行详细的分析处理。这时要正确的分组运算就必须依赖于待分组集合中成员(文本日志的行)的次序了。
入学考试之后,把学生按成绩排序蛇行分拆成两个班,即名次1,4,5,8,...在一个,而2,3,6,7,...在另一个班,这样能保证两个班的平均名次是相同的。这个分组也可以用序号做出来:
A.sort@z(score).group(#%4<2)
这里用的分组值不再是常见的普通数值,而是一个布尔量,相当于按“真“值和“假”值分成两个组,真值对应第一个班,假值对应另一个班。本质上讲,这还是个等值分组,只是用到的分组值可以是任意泛型。
显然,这个分组的正确性也严重依赖于待分组集成的成员次序。
顺便说一句,这又是一个只关注分组子集而不关心聚合值的例子。按序号分组在很多情况下就是用序号来计算出分组依据,然后就变成普通的等值分组了。那么有没有不能简单地转换成等值分组的情况呢?
有一组婴儿出生记录,是按出生次序排序的,我们现在关心连续出生的同性别婴儿数量超过5的有多少批?
简单想,这就是先GROUP,计算每组COUNT值,然后数出有几个大于5的。后两步很简单,问题是怎么GROUP?
直接按婴儿性别分组当然是不对的,必须考虑次序,依次扫描记录,当婴儿性别发生变化时则产生一个新组。这种分组显然没法直接用等值分组做出来了。
我们可以提供一个有序分组方法来实现这种分组:当考察值发生变化时就产生一个新的分组。
A.group@o(gender).count(~.len()>5) // @o选项表示分组值变化时将产生新分组。
用SQL就麻烦很多,需要先造成中间标志和变量来生成组的序号,大概是这样
SELECT COUNT(*) FROM
(SELECT ChangeNumber FROM
(SELECT SUM(ChangeFlag) OVER (ORDER BY birthday) ChangeNumber FROM
(SELECT CASE WHEN gender=LAG(gender) OVER ( ORDER BY birthday) THEN 0 ELSE 1 END ChangeFlag FROM A))
GROUP ChangeNumber HAVING COUNT(*)>5)
这样的SQL,看懂都不是很容易的。而且必须借助birthday这种字段来形成次序,而前述的有序分组写法在原数据有序时根本用不着这个信息。
这种场景同样可能出现在文本分析中。每个用户的事件日志可能多行,而且行数不确定,但写日志时会在每个行开始处写上用户号。这样我们可以按这个用户号进行有序分组,它变化时就说明是另一个用户的事件了。
即使是普通的等值分组,如果事先知道原集合对分组字段有序,也可以使用这种方案来实施,这将获得更高的性能,比数据库常用的HASH分组方案要快得多,而且特别适合大数据遍历的情况。
再看一个著名的问题:一支股票最长连续上涨了多少天?
这个问题当然可以直接遍历去解决,不过我们现在用分组的思路来处理,至少在SQL体系下只能这么做(严格些说,这是目前找到的最简单可行的办法)。
将股票收盘价按日期排序,然后将连续上涨的日期分到同一组,这样只要考虑哪一组成员数最多即可。更明确地说,就是当某天上涨了,就把这一天和前一天分到一个组中,某天下跌了,则产生一个新组。
用SQL实现这个思路,同样需要用中间标志和变量来生成组序号:
SELECT MAX(ContinuousDays) FROM
(SELECT COUNT(*) ContinuousDays FROM
(SELECT SUM(RisingFlag) OVER (ORDER BY TradingDate ) NoRisingDays FROM
(SELECT TradingDate,
CASE WHEN ClosingPrice>LAG(ClosingPrice) OVER (ORDER BY TradingDate THEN 0 ELSE 1 END) RisingFlag
FROM A))
GROUP BY NoRisingDays)
如果有专门的有序分组方法以及以前说过的有序遍历语法,这个运算就很简单了:
A.sort(TradingDate).group@i(ClosingPrice
与SQL不同,虽然实现思路完全一样,但写出来是分步的,而不是一个多层嵌套语句,书写和理解都要容易得多。
同样地,这种场景也会在文本分析中有用。不确定行数的日志中,有时会在事件分始时写一个标志串,当扫描到这个标志串的时候就产生一个新的分组,有序分析的条件可设定为当前扫描行和指定文字相同,这样就能保证同一事件的日志信息在同一个组中。
后两种有序分组的情况,理论上当然也可以转换成等值分组来处理(用SQL就要这么做,这也能从另一个侧面说明SQL运算体系的完备性),但确实是相当麻烦的,所以我们一般不把它再当成等值分组来处理了。
到目前为止的分组讨论,都是假定待分组集合已经准备好,其成员可以被随机访问到。但如果数据量巨大而不能全部读入时,如果继续做这种假定,会导致频繁的外存交换而性能极差,这时需要再设计以流方式边读入边分组并且边聚合的运算体系。事实上日志分析中更常见的是这种情况,这些问题我们将再撰文研究,但基本方法思路仍然离不开上面这些内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05