
哑变量在SPSS和SAS进行回归分析应用
虚拟变量(Dummy Variable),又称虚设变量、名义变量或哑变量,是量化了的质变量,通常取值为0或1。引入哑变量可使线形回归模型变得更复杂,但对问题描述更简明。
名义变量引入回归分析,必须进行数量化。如,职业有工人、农民、教师,分别赋值0,1,2。但是0,1,2代表的实际意义又不是由小到大的关系。所以这在回归分析中直接使用是错误的。如考虑季节因素时,用1,2,3,4编码也是不合理的,通常也进行哑变量化。
对于有序变量,如轻、中、重,则要酌情考虑。如果样本量足够打的话,也进行哑变量化,这样可以得到不同级别的差异。但是如果样本量不够大是,哑变量化造成变量数目上升,使回归结果变得不可靠,只能适得其反。
哑变量设置的原则
在模型中引入多个哑变量时,哑变量的个数应按下列原则确定:
如果有m种互斥的属性类型,在模型中引入(m-1)个哑变量。
例如,文化程度分小学、初中、高中、大学、研究生5类,引用4个哑变量
回归分析
在spss中,logistics回归中,有专门的选项来处理需要哑变量化的变量,只需单击“Categorical..”进行设置即可。但是对于多元线性回归就没有那么幸运了。
用computer或recode设置一组哑变量。由于哑变量是一个整体变量,所以进行变量筛选时必须共同进退。因此,讲所有哑变量同一般变量一下直接进行筛选是不对的,会出现一部分变量进入一部分变量未进入的情形。解决的方法是:将同一因素下的哑变量进行归组,在纳入方法中选择了“ENTER”来确保这些哑变量同进同出,而其它连续型变量和二分类变量则归为另一组,纳入方法为STEPWISE。然后在没有纳入这组哑变量的情况下再做一次STEPWISE,再来比较是不是应该纳入这组哑变量。
在sas中,哑变量的设置需要另外写程序,但是在回归程序中,则比较简单。eg.因变量y,自变量x1,x2,哑变量组x31 x32 x33,
proc reg;
model y=x1 x2 {x31 x32 x33} /selection=stepwise;
run;
即,把哑变量组用{}括起来就可以了。
SPSS多元线性回归哑变量设置
在spss中,logistics回归中,有专门的选项来处理需要哑变量化的变量,只需单击“Categorical..”进行设置即可。但是对于多元线性回归就没有那么幸运了。
用compute或recode设置一组哑变量。比如学历有三个等级:高中及以下,本科,研究生及以上。设置两个哑变量:学历1,学历2。下面以compute为例说明如何定义哑变量。
利用compute对学历1,学历2进行计算。设置成学历为高中及以下时学历1=0,历为高中及以下时学历2=0;学历为本科时学历1=1,为本科时学历2=0;为研究生及以上时学历1=0,为研究生及以上时学历2=1。
举例如下:
在SPSS中将多分类变量设置为哑变量比较麻烦,其中的一种方法就是将该多分类变量转换成N-1列的哑变量,举例来说,原多分类变量有四个取值(A/B/C/D),这时需要设置三列哑变量,比如D2,D3,D4
用如果变量值是B,则D2=1,否则取0,如果是C,则用D3=1,否则取0,如果是D,则D4=1,否则取0
D2 D3 D4
1 0 0——》B
0 1 0——》C
1 0 0——》B
0 0 1——》D
0 0 0——》A
注意,4分类只能设置3个哑变量!
定义好所有的哑变量之后,接下来就可以进行多元线性回归的计算了。由于哑变量是一个整体变量,所以进行变量筛选时必须共同进退。因此,将所有哑变量同一般变量一下直接进行筛选是不对的,会出现一部分变量进入一部分变量未进入的情形。
解决的方法是:将同一因素下的哑变量进行归组(block),在纳入方法中选择了“ENTER”来确保这些哑变量同进同出,而其它因素的哑变量另一组(block),除哑变量之外,其余自变量归为一个block,纳入方法为STEPWISE。
结果的解读方面,只要哑变量有其中一个有统计学显著性,就应该把整个因素包含的哑变量纳入回归方程。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29