京公网安备 11010802034615号
经营许可证编号:京B2-20210330
朴素贝叶斯估计
朴素贝叶斯是基于贝叶斯定理与特征条件独立分布假设的分类方法。首先根据特征条件独立的假设学习输入/输出的联合概率分布,然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。
具体的,根据训练数据集,学习先验概率的极大似然估计分布
以及条件概率为
条件概率的极大似然估计为
根据贝叶斯定理
则由上式可以得到条件概率P(Y=ck|X=x)。
贝叶斯估计
用极大似然估计可能会出现所估计的概率为0的情况。后影响到后验概率结果的计算,使分类产生偏差。采用如下方法解决。
条件概率的贝叶斯改
其中Sl表示第l个特征可能取值的个数。
同样,先验概率的贝叶斯估计改为
$$
P(Y=c_k) = \frac{\sum\limits_{i=1}^NI(y_i=c_k)+\lambda}{N+K\lambda}
$K$
表示Y的所有可能取值的个数,即类型的个数。
具体意义是,给每种可能初始化出现次数为1,保证每种可能都出现过一次,来解决估计为0的情况。
朴素贝叶斯分类器可以给出一个最有结果的猜测值,并给出估计概率。通常用于文本分类。
分类核心思想为选择概率最大的类别。贝叶斯公式如下:
词条:将每个词出现的次数作为特征。
假设每个特征相互独立,即每个词相互独立,不相关。则
完整代码如下;
import numpy as np
import re
import feedparser
import operator
def loadDataSet():
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1] #1 is abusive, 0 not
return postingList,classVec
def createVocabList(data): #创建词向量
returnList = set([])
for subdata in data:
returnList = returnList | set(subdata)
return list(returnList)
def setofWords2Vec(vocabList,data): #将文本转化为词条
returnList = [0]*len(vocabList)
for vocab in data:
if vocab in vocabList:
returnList[vocabList.index(vocab)] += 1
return returnList
def trainNB0(trainMatrix,trainCategory): #训练,得到分类概率
pAbusive = sum(trainCategory)/len(trainCategory)
p1num = np.ones(len(trainMatrix[0]))
p0num = np.ones(len(trainMatrix[0]))
p1Denom = 2
p0Denom = 2
for i in range(len(trainCategory)):
if trainCategory[i] == 1:
p1num = p1num + trainMatrix[i]
p1Denom = p1Denom + sum(trainMatrix[i])
else:
p0num = p0num + trainMatrix[i]
p0Denom = p0Denom + sum(trainMatrix[i])
p1Vect = np.log(p1num/p1Denom)
p0Vect = np.log(p0num/p0Denom)
return p0Vect,p1Vect,pAbusive
def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1): #分类
p0 = sum(vec2Classify*p0Vec)+np.log(1-pClass1)
p1 = sum(vec2Classify*p1Vec)+np.log(pClass1)
if p1 > p0:
return 1
else:
return 0
def textParse(bigString): #文本解析
splitdata = re.split(r'\W+',bigString)
splitdata = [token.lower() for token in splitdata if len(token) > 2]
return splitdata
def spamTest():
docList = []
classList = []
for i in range(1,26):
with open('spam/%d.txt'%i) as f:
doc = f.read()
docList.append(doc)
classList.append(1)
with open('ham/%d.txt'%i) as f:
doc = f.read()
docList.append(doc)
classList.append(0)
vocalList = createVocabList(docList)
trainList = list(range(50))
testList = []
for i in range(13):
num = int(np.random.uniform(0,len(docList))-10)
testList.append(trainList[num])
del(trainList[num])
docMatrix = []
docClass = []
for i in trainList:
subVec = setofWords2Vec(vocalList,docList[i])
docMatrix.append(subVec)
docClass.append(classList[i])
p0v,p1v,pAb = trainNB0(docMatrix,docClass)
errorCount = 0
for i in testList:
subVec = setofWords2Vec(vocalList,docList[i])
if classList[i] != classifyNB(subVec,p0v,p1v,pAb):
errorCount += 1
return errorCount/len(testList)
def calcMostFreq(vocabList,fullText):
count = {}
for vocab in vocabList:
count[vocab] = fullText.count(vocab)
sortedFreq = sorted(count.items(),key=operator.itemgetter(1),reverse=True)
return sortedFreq[:30]
def localWords(feed1,feed0):
docList = []
classList = []
fullText = []
numList = min(len(feed1['entries']),len(feed0['entries']))
for i in range(numList):
doc1 = feed1['entries'][i]['summary']
docList.append(doc1)
classList.append(1)
fullText.extend(doc1)
doc0 = feed0['entries'][i]['summary']
docList.append(doc0)
classList.append(0)
fullText.extend(doc0)
vocabList = createVocabList(docList)
top30Words = calcMostFreq(vocabList,fullText)
for word in top30Words:
if word[0] in vocabList:
vocabList.remove(word[0])
trainingSet = list(range(2*numList))
testSet = []
for i in range(20):
randnum = int(np.random.uniform(0,len(trainingSet)-5))
testSet.append(trainingSet[randnum])
del(trainingSet[randnum])
trainMat = []
trainClass = []
for i in trainingSet:
trainClass.append(classList[i])
trainMat.append(setofWords2Vec(vocabList,docList[i]))
p0V,p1V,pSpam = trainNB0(trainMat,trainClass)
errCount = 0
for i in testSet:
testData = setofWords2Vec(vocabList,docList[i])
if classList[i] != classifyNB(testData,p0V,p1V,pSpam):
errCount += 1
return errCount/len(testData)
if __name__=="__main__":
ny = feedparser.parse('http://newyork.craigslist.org/stp/index.rss')
sf = feedparser.parse('http://sfbay.craigslist.org/stp/index.rss')
print(localWords(ny,sf))
编程技巧:
1.两个集合的并集
vocab = vocab | set(document)
2.创建元素全为零的向量
vec = [0]*10
以上就是本文的全部内容,希望对大家的学习有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15