
初学者必看丨如何成为一名数据科学家
想从事数据科学领域的初学者总是很困惑:应该学习哪种编程语言?专业重要吗?需要掌握哪些工具和技能?在这篇文章中,你的这些问题都能得到解答。
几星期前,我发布了我的第二篇Kaggle Kernel( Kernel: Kaggle 中用于探索概念、展示技术或分享解决方案的短脚本)。我对Kaggle最近发布的“机器学习和数据科学现状”调查很感兴趣,并认为我可以从中得出一些有趣的见解。我以为大多数写Kernel的人都已经是数据科学家了,比起如何入门,他们应该对其他的内容更感兴趣。
令我惊讶的是,我赢得了每周一次的Kernel奖,我的这篇Kernel最终获得了超过预期的关注度。
在这里我把这篇分享给大家,探究如何成为一名数据科学家。
一、编程语言
据我所知,数据科学领域有两种语言是最常用的,即Python和R语言。我个人比较喜欢R语言,但是好奇在实际情况中是什么样的。
我根据受访者的职位,比较选择Python或R语言作为主要编程语言的人数。事实证明,除了统计学和运筹学之外,其他职位中使用Python的人数更多。然而这两个领域,特别是运筹学由于样本量太小,以至于结果的参考价值并不高。
二、专业和职位
我想知道哪些专业倾向选择哪些职位,因此我创建了比较大学专业和所选职位的图表。
当然,计算机科学专业的人群会成为计算机科学家,程序员和软件工程师。数学专业的人群会选择预测建模,数据科学和统计学职位,物理专业则倾向于进入研究领域。
图表中一个有趣的信息是,每个职位都有至少一名非此专业的人士。这表明,只要你有理想,所学专业不是限制做你想做的事情的理由。
三、学习资源
用来学习数据科学的在线资源特别丰富。我很好奇对于调查的受访者来说哪些在线资源是最有用的。
事实证明,人们认为创建项目,参加课程,参加Kaggle挑战是学习和了解数据科学最有用的方法。我很喜欢从事数据科学的项目,并在完成项目的过程中一步步成长为一名数据科学家。
四、重要的工作技能
调查的另一个问题是询问受访者,他们认为在工作中最有用的技能是什么。
掌握Python和统计知识被认为是最有用的工作技能。这方面R语言略微落后于Python,这反映了第一张图的情况。有趣的是,MOOC(大型开放式网络课程)在实用性方面得分最低。然而上一张图中,人们认为在线课程是学习数据科学最有用的资源之一。这也让我感觉不是跟确定,是不是受访者认为在找工作时,MOOC不应该被用作认证。
五、实际运用的工具
受访者也被问到,他们认为哪些技术在日常工作中最有用。在以下图表中,我分析了所有受访者的情况,以及具体的职位情况。
Python被评为整个行业中最需要掌握的技术。R语言排名第三位。每个职位都说要用到SQL、Jupyter、Unix和TensorFlow了。表明这些可能是不久之后需要掌握的重要技术。
六、实际运用的方法
与上一个问题类似,受访者被问到,他们在工作中实际运用到的数据科学方法。
我们可以看到,每个职业的人群都用到了数据可视化、交叉验证、逻辑回归和决策树。机器学习工程师则要经常使用自然语言处理和神经网络技术。其他职位有相应的方法需要经常使用。
结论
我喜欢运用庞大的数据集,这将非常适合我今后的工作。如果你是一名数据科学家新手,并且正在找工作,那么我给你列出以下几几条建议:
1.学习 Python
Python和R语言都已经存在数十年了。但正如我们在第一张图中看到的那样,在大多数情况下Python是胜出的。图四和图五也反应了这一情况。很难找到一家不使用Python的公司,所以学好Python绝对是没错的。
2.专业选择计算机科学或数学
正如图二所示,每个职位都有不同的专业。然而根据图中的比例来看,每个职位中计算机科学和数学人数是最多的。虽然这不是必须的,但这两个专业能让你在求职中获得一些优势。
3.创建项目、参加课程、参与Kaggle挑战
正如图三所示,学习数据科学方面有些方法特别实用。
4.了解广泛使用的工具
有无数的工具可供我们使用,但通过这次调查,我们了解到哪些是主流的工具。
我希望以上几点能够帮助你起步,逐步成为一名数据科学家。祝你好运!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18