
初学者必看丨如何成为一名数据科学家
想从事数据科学领域的初学者总是很困惑:应该学习哪种编程语言?专业重要吗?需要掌握哪些工具和技能?在这篇文章中,你的这些问题都能得到解答。
几星期前,我发布了我的第二篇Kaggle Kernel( Kernel: Kaggle 中用于探索概念、展示技术或分享解决方案的短脚本)。我对Kaggle最近发布的“机器学习和数据科学现状”调查很感兴趣,并认为我可以从中得出一些有趣的见解。我以为大多数写Kernel的人都已经是数据科学家了,比起如何入门,他们应该对其他的内容更感兴趣。
令我惊讶的是,我赢得了每周一次的Kernel奖,我的这篇Kernel最终获得了超过预期的关注度。
在这里我把这篇分享给大家,探究如何成为一名数据科学家。
一、编程语言
据我所知,数据科学领域有两种语言是最常用的,即Python和R语言。我个人比较喜欢R语言,但是好奇在实际情况中是什么样的。
我根据受访者的职位,比较选择Python或R语言作为主要编程语言的人数。事实证明,除了统计学和运筹学之外,其他职位中使用Python的人数更多。然而这两个领域,特别是运筹学由于样本量太小,以至于结果的参考价值并不高。
二、专业和职位
我想知道哪些专业倾向选择哪些职位,因此我创建了比较大学专业和所选职位的图表。
当然,计算机科学专业的人群会成为计算机科学家,程序员和软件工程师。数学专业的人群会选择预测建模,数据科学和统计学职位,物理专业则倾向于进入研究领域。
图表中一个有趣的信息是,每个职位都有至少一名非此专业的人士。这表明,只要你有理想,所学专业不是限制做你想做的事情的理由。
三、学习资源
用来学习数据科学的在线资源特别丰富。我很好奇对于调查的受访者来说哪些在线资源是最有用的。
事实证明,人们认为创建项目,参加课程,参加Kaggle挑战是学习和了解数据科学最有用的方法。我很喜欢从事数据科学的项目,并在完成项目的过程中一步步成长为一名数据科学家。
四、重要的工作技能
调查的另一个问题是询问受访者,他们认为在工作中最有用的技能是什么。
掌握Python和统计知识被认为是最有用的工作技能。这方面R语言略微落后于Python,这反映了第一张图的情况。有趣的是,MOOC(大型开放式网络课程)在实用性方面得分最低。然而上一张图中,人们认为在线课程是学习数据科学最有用的资源之一。这也让我感觉不是跟确定,是不是受访者认为在找工作时,MOOC不应该被用作认证。
五、实际运用的工具
受访者也被问到,他们认为哪些技术在日常工作中最有用。在以下图表中,我分析了所有受访者的情况,以及具体的职位情况。
Python被评为整个行业中最需要掌握的技术。R语言排名第三位。每个职位都说要用到SQL、Jupyter、Unix和TensorFlow了。表明这些可能是不久之后需要掌握的重要技术。
六、实际运用的方法
与上一个问题类似,受访者被问到,他们在工作中实际运用到的数据科学方法。
我们可以看到,每个职业的人群都用到了数据可视化、交叉验证、逻辑回归和决策树。机器学习工程师则要经常使用自然语言处理和神经网络技术。其他职位有相应的方法需要经常使用。
结论
我喜欢运用庞大的数据集,这将非常适合我今后的工作。如果你是一名数据科学家新手,并且正在找工作,那么我给你列出以下几几条建议:
1.学习 Python
Python和R语言都已经存在数十年了。但正如我们在第一张图中看到的那样,在大多数情况下Python是胜出的。图四和图五也反应了这一情况。很难找到一家不使用Python的公司,所以学好Python绝对是没错的。
2.专业选择计算机科学或数学
正如图二所示,每个职位都有不同的专业。然而根据图中的比例来看,每个职位中计算机科学和数学人数是最多的。虽然这不是必须的,但这两个专业能让你在求职中获得一些优势。
3.创建项目、参加课程、参与Kaggle挑战
正如图三所示,学习数据科学方面有些方法特别实用。
4.了解广泛使用的工具
有无数的工具可供我们使用,但通过这次调查,我们了解到哪些是主流的工具。
我希望以上几点能够帮助你起步,逐步成为一名数据科学家。祝你好运!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29