京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS聚类分析:K均值聚类分析
一、概念:(分析-分类-K均值聚类)
1、此过程使用可以处理大量个案的算法,根据选定的特征尝试对相对均一的个案组进行标识。不过,该算法要求您指定聚类的个数。如果知道,您可以指定初始聚类中心。您可以选择对个案分类的两种方法之一,要么迭代地更新聚类中心,要么只进行分类。可以保存聚类成员、距离信息和最终聚类中心。还可以选择指定一个变量,使用该变量的值来标记个案输出。您还可以请求分析方差F统计量。
二、聚类中心(分析-分类-K均值聚类)
为获得最佳有效性,可取一个个案样本并选择迭代和分类方法确定聚类中心。选择最终聚类中心另存为。然后恢复整个数据文件并选择仅分类作为方法,并选择读取初始聚类中心来源以使用该样本估计的中心对整个文件分类。您可以写入和读取文件或数据集。可以在同一会话中继续使用数据集,但不会将其另存为文件,除非在会话结束之前明确将其保存为文件。数据集名称必须符合变量命名规则。
三、迭代(分析-分类-K均值聚类-迭代)
注意:只有在您从“K均值聚类分析”对话框中选择了迭代和分类方法的情况下,这些选项才可用。◎最大迭代次数。限制K均值算法中的迭代次数。即使尚未满足收敛准则,达到迭代次数之后迭代也会停止。此数字必须在1到999之间。◎收敛性标准。确定迭代何时停止。它表示初始聚类中心之间的最小距离的比例,因此必须大于0且小于等于1。例如,如果准则等于0.02,则当完整的迭代无法将任何聚类中心移动任意初始聚类中心之间最小距离的2%时,迭代停止。◎使用运行均值。允许您请求在分配了每个个案之后更新聚类中心。如果不选择此选项,则会在分配了所有个案之后计算新的聚类中心。
四、保存(分析-分类-K均值聚类-保存)
1、聚类成员。创建指示每个个案最终聚类成员的新变量。新变量的值范围是从1到聚类数。
2、与聚类中心的距离。创建指示每个个案与其分类中心之间的欧式距离的新变量。
五、选项:(分析-分类-K均值聚类-选项)
统计量。您可以选择以下统计量:初始聚类中心、ANOVA表以及每个个案的聚类信息。◎初始聚类中心.每个聚类的变量均值的第一个估计值。默认情况下,从数据中选择与聚类数相等的分布良好的多个个案。初始聚类中心用于第一轮分类,然后再更新。◎ANOVA表.显示方差分析表,该表包含每个聚类变量的一元F检验。F检验只是描述性的,不应解释生成的概率。如果所有个案均分配到单独一个聚类,则ANOVA表不显示。◎每个个案的聚类信息.显示每个个案的最终聚类分配,以及该个案和用来对个案分类的聚类中心之间的Euclidean距离。还显示最终聚类中心之间的欧氏距离。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28