京公网安备 11010802034615号
经营许可证编号:京B2-20210330
随着大数据时代的到来,企业管理者对数据价值的重视度越来越高,他们渴望从企业内外部数据中获得更多的信息财富,并以此为依据,帮助自己做出正确的战略决策,数据分析技能被应用在诸如互联网、金融、电商、市场、运营等各行各业。因此,掌握数据分析相关技能已经成为大数据时代的重要加薪砝码。
具体来说,你需要掌握以下的知识技能来提升大数据时代的职业竞争力。
1.统计学思想和方法
如果拥有出色的工具使用技能,但是不会解读数据,那又有什么用呢?对数据分析来说,了解统计学知识很关键,包含描述性统计学和推断性统计学。统计学更多地是提供解决问题的思路,在你未来的工作中会显得越来越重要。
2.SQL数据库查询语言
不光是数据分析,当下大部分的岗位中,诸如产品经理、市场运营等岗位。SQL都被列为一项重要的技能。你需要知道如何从关系型数据库(诸如Mysql,Oracle,Sql Server)中提取出你自己需要的数据。
俗话说,工欲善其事必先利其器。这个依据你的行业和兴趣而定。如银行、医药行业多用SAS,市场咨询、电信等行业偏爱SPSS。如果你对编程感兴趣,那么它是让数据分析师超越业务分析师之上的核心技能,你需要熟练掌握一到多门编程语言,从 Python 或 R 开始。
如果你是数据分析师或者对数据分析感兴趣,你不需要发明新的机器学习算法,但是你应该了解这些领域的常见概念。一些示例包括主成分分析、神经网络、支持向量机和 K 均值聚类。你需要掌握监督式学习和非监督式学习的方法。
5.大数据分析能力
如果你的企业面临的数据量级足够大,而且你对大数据分析感兴趣,那么你需要了解大数据存储和分析的工具,诸如hadoop,Spark等技术。
6.数据可视化能力
如果你无法清晰有效地传达你的想法,那么你的数据分析繁琐工作不会受到任何认可。熟悉诸如 Power BI、Tableau、GGplot、Matplotlib、Seaborn 等任何一款数据可视化工具将会有帮助。要取得成功,你还需要完全了解业务背景,以便知道如何调整你的数据可视化结果,使其具有最高的关联性。
数据分析是一个快速发展的学科,以上的也可能会有所偏驳。如果你对任一技能感兴趣并潜心学习,都足够成为大数据时代的加薪砝码,成为企业的抢手人才。当然,除了技术能力以外,你还需要掌握数据之外的必备能力。
1.抽象思维能力:数据分析师的任务不该止步于技术开发,他们更大的价值是培养抽象思维能力。具体来说是将一个虚无缥缈的概念剖开,成为数据可以解答的问题⸺建立框架和分析角度,分解分解大而全的问题,用数据分析给出小而美的答案,进一步将其变成产品建议,进而为高层提供决策依据;
2. 沟通技能:数据分析师在数据获取、分析、洞察及实施各个阶段都需要业务团队及高层的配合,因而,数据团队对成员的沟通技能有较高要求:在合作初期,数据团队需要具备发现业务团队需求的沟通力;合作中,尽快让业务团队建立起对数据团队的信任感并克服其抵触感;拿到分析结果后,数据团队应总结洞察并提出业务建议,精准且有效率地与决策者沟通,辅助其决策;最终,数据团队应配合业务和高层将相关分析结果实施落地;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11