京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2013年是电子商务逐步成熟的一年,网上购物越来越方便;而线下母婴零售店促销打折不断,竞争异常激烈,留给母婴零售店高层管理者两个不得不认真去思考的企业经营问题:
1. 如何去唤醒招募进来的沉默会员?
2. 如何让目前活跃的老客户进店购买更多的产品,最大限度地释放其价值?
因为大多母婴零售店采用了会员制度,积累了越来越多的会员数据,在数据化管理的时代,会员的消费数据意味着公司的财富。如何对会员数据进行深入挖掘,并辅以有效的营销活动执行,更好地帮助母婴零售商、母婴品牌商共同把生意做大做好呢?
本文结合所操作过的某高档母婴奶粉品牌联合某母婴零售店进行联合销售的数据挖掘项目经验,如图1所示,将从以下4个步骤深入浅出地介绍如何通过数据挖掘帮助母婴零售商、品牌商把生意做得更好、更强。
古语有云:“物以类聚,人以群分。”说明了不同的群体具备不同的行为特征,所采取的营销策略也不一样。母婴零售行业也不例外,只有对会员有效地进行客户细分,然后针对不同的会员采取相符合的营销政策,才能更好地达到相应的营销效果。
结合某大型母婴零售店的会员信息及某高档母婴奶粉品牌的特征,对该母婴零售店的会员进行客户细分,主要分为4大类客户(如图2所示):
1. 新妈妈/孕妈妈:新妈妈主要指最近3个月新招募过来的且小孩年龄在0~3岁左右的妈妈,但在该母婴店却没有任何消费记录的会员;而孕妈妈是最近3个月新招募回来的且还在怀孕期的妈妈,但在该母婴零售店却没有任何消费记录的会员。
2. 成熟妈妈:指最近3个月招募回来的但小孩年龄已经超过了3岁的妈妈,在该母婴店却没有任何消费记录的会员。
3. 奶粉购买会员:是指小孩年龄在0~3岁的且在该母婴店购买过奶粉的会员。
4. 奶粉沉睡会员:是指小孩年龄在0~3岁的且在该母婴店购买过非奶粉的会员。
结合商业目标是挖掘高档奶粉潜在目标客户,帮助母婴零售店及奶粉品牌商联合共赢,奶粉购买会员里面可以细分两种目标用户:高档奶粉消费者及高档奶粉潜力消费者。而奶粉沉睡会员众多,需要找出那些具有消费能力的客户进行激活消费,此类客户需要寻找潜在高档奶粉消费者。
通过对会员数据的有效细分,寻找潜在目标用户,并针对不同的客户群体进行营销,如对新妈妈/孕妈妈、潜在高档奶粉消费者进行激活消费;促进高档奶粉消费者买得更多及增加其来店频率,最大释放其消费价值;而对高档奶粉潜力消费者,则让其尝试买得更贵。
每个妈妈在对不同品类母婴产品的选择上,有很大差异。比如有的妈妈倾向于购买最贵的纸尿裤,但认为奶粉只要中档品牌就可以;也有妈妈购买低廉价格的纸尿裤,却买最贵的玩具和服饰。因此进行客户细分之后,还要对他们是否对我们目标商品有价值进行预判。
结合高档奶粉目标用户的商业目标出发,消费者价值的预判主要针对其购买历史记录,从以下三个角度进行判断会员价值:
1. 是否经常购买高档奶粉关联产品
通过数据挖掘的购物篮关联分析去研究买过高档奶的购买者行为特征,找出高档奶粉的亲缘品类。通过购物篮分析可以发现,很多客户在购买一段雅培高档奶 粉的同时也会购买某品牌的婴儿专用洗衣液,则该品牌的婴儿专用洗衣液为该高档奶粉的亲缘品类。结合亲缘品类的购买情况,可以判定“未购买目标品类的会员” 是否有购买目标品类的潜力。
2. 是否曾经购买过高端标杆产品
并不是有钱的家庭一定会购买高档商品,也不是经济条件差的家庭就一定会选择最低价商品。但购买过高端标杆母婴产品的会员就肯定有一定的能力消费得起高档产品。
在母婴零售行业中,有几类高端标杆产品能够凸显会员的消费能力。经常购买高档纸尿裤、购买过高档推车(如价值上千的GoodBaby推车)或者购买 过高档奶瓶(如购买过日本原装进口 betta贝塔智能型玻璃奶瓶),这些会员有经济能力消费得起高端母婴产品,就说明其经济能力能够消费得起高档婴儿奶粉,这些会员则是高档婴儿奶粉的潜在 会员。
3. 结合登记地址辅助纠正会员的价值
在新会员招募的时候,母婴零售商家会要求会员留下相应的家庭联系地址,以方便后期能够更好地进行精准营销。通过登记地址信息梳理,辅助纠正会员的消费价值。
综上所述,在进行会员价值判断的时候,必须结合会员的历史消费记录、登记地址梳理,才能更有效地识别会员的价值,从而找到潜在的高档婴儿奶粉的潜在 目标。如图4所示,某会员在该母婴零售店购买了中档的婴儿奶粉及相关产品,从购买该奶粉的历史记录来看,该会员消费能力仅为中等水平。但再结合其过去购买 产品记录及对其登记地址进行梳理,可以发现该会员有能力买得起高档奶粉,为高消费能力的潜在会员。
结合会员的历史购买记录数据及注册信息,通过数据挖掘可以将所有潜在购买者划分为的4个象限:
第1象限:不但购买过高档奶粉,而且又有较高消费能力的群体,是我们的核心顾客,应该重点维系。
第2象限:虽然购买高档奶粉但消费能力比较低的群体,对促销优惠会更加敏感,该象限会员为优惠敏感顾客。
第3象限:既没有消费能力又不买高档奶粉的顾客,该象限会员为低消费群体。在营销经费有限的情况下,可以选择性放弃。
第4象限:消费能力高却只买低档奶粉的顾客,通常比较容易被忽略,但却是非常具有潜力的群体。
在有效进行客户细分及有效判断会员价值的前提下,如何设计合理的营销活动成为了关键?
对会员进行营销推广有很多不同的形式,其推广的目的也不一样。
母婴零售企业对消费者进行营销推广的各种目的,以及每种目的可以使用哪些营销推广方式。
结合高档奶粉数据挖掘的商业目的“唤醒沉睡会员及让老会员购买得更多”,针对不同群组的会员设计了不同的营销活动方案。
结合不同的婴儿奶粉细分客户群,针对不同的营销目的,匹配相应的营销活动设计,能够更有效地提高营销活动成功率。
在进行客户细分、价值判断、营销活动设计等一系列工作之后,需要进行科学的营销效果评估,以帮助母婴零售店能够及时了解营销活动的效果,同时发现营销执行中存在的问题,不断优化营销活动方案设计。
如图6所示,目前我们主要采用了“五度”评估体系,从营销目标完成度、营销推广响应度、营销推广成功度、参加客户成长度、参加客户满意度等五个方面去评价营销活动效果。
营销效果评估体系
围绕着五度评估体系,针对母婴零售行业的特性,我们主要从以下几个方面对营销效果进行科学评估:
1. 营销活动前后的整体销售额、客户数大小变化情况;
2. 营销活动前后的老客户响应人数、购物频次、购物篮大小等关键指标的变化情况;
3. 沉睡会员转化率、参与活动的客户数、贡献的销售额分析;
4. 各个营销活动的投入产出比(ROI)分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22