
今天,我们继续开启分类算法之旅,它是一种高效简介的分类算法,后面有一个集成算法正是基于它之上,它是一个可视化效果很好的算法,这个算法就是决策树。
1 一个例子
有一堆水果,其中有香蕉,苹果,杏这三类,现在要对它们分类,可以选择的特征有两个:形状和大小,其中形状的取值有个:圆形和不规则形,大小的取值有:相对大和相对小。现在要对其做分类,我们可以这样做:
首先根据特征:形状,如果不是圆形,那么一定是香蕉,这个就是叶子节点;
如果是圆形,
再进一步根据大小这个特征判断,如果是相对大的,则是苹果,如果否,则是杏子,至此我们又得到两个叶子节点,并且到此分类位置,都得到了正确划分三种水果的方法。
大家可以体会刚才这个过程,这就是一个决策分类,构建树的一个过程,说成是树,显得有点高大上,再仔细想想就是一些列 if 和 else 的嵌套,说是树只不过是逻辑上的一种神似罢了。
刚才举的这个例子,有两个特征:形状和大小,并且选择了第一个特征:形状作为第一个分裂点,大小作为第二个分裂点,那么不能选择第二个特征作为第一分裂点吗? 这样选择有没有公式依据呢?
2 分裂点选择依据
在上个例子中,有三类水果,现在假设杏都被我们家的宝宝吃完了,现在手里只有香蕉和苹果这两类水果了,并且这个时候要对它们做分类,此时机灵的你,一定会根据特征:形状对它们分类了,因为这样一下就会把它们分开了,此时我们说这类集合的纯度更高,与之前的那三类水果在形状这个特征上。
纯度这个概念是很好的理解的,种类越少纯度越高,自然两类纯度更高。 此时有人提出了一个和它相反的但是不那么容易理解的概念:熵。它们是敌对双方:熵越大,纯度越低;熵越小,纯度越高。
这是一种概念,那么如何用公式量化熵呢:
其中 i 等于苹果,香蕉,杏,P(i)是集合中取得某一个水果的概率。
试想一下,如果我们想更好地对某个集合完成分类,会怎么做呢?我们一定会优先选择一个特征,使得以这个特征做分类时,它们能最大程度的降低熵,提高分类的纯度,极限的情况是集合中100个元素(集合中只有两类水果),根据某个最优特征,直接将分为两类,一类都是苹果,一类都是杏,这样熵直接等于0。
这个特点就是所谓的信息增益,熵降低的越多,信息增益的就越多。很多时候都不会发生上述说的这个极限情况,就像文章一开始举的例子,根据形状划分后,熵变小了,但是未等于0,比如刚开始三类水果的熵等于0.69,现在根据形状分裂后,熵等于了0.4,所以信息增益为0.69 – 0.4 = 0.29 。如果根据大小划分,信息增益为0.1,那么我们回考虑第一个分裂特征:形状。
这种方法有问题吗?
3 信息增益越大,分类效果越好?
这是只根据信息增益选择分裂特征点的bug,请看下面举例。
如果某个特征是水果的唯一标示属性:编号,那么此时如果选择这个特征,共得到100个叶子节点(假设这堆水果一共有100个),每个叶子节点只含有1个样本,并且此时的信息增益最大为 0.69 – 0 = 0.69 。
但是,这是好的分类吗? 每一个样本作为单独的叶子节点,当来了101号水果,都不知道划分到哪一个叶子节点,也就不知道它属于哪一类了!
因此,这个问题感觉需要除以某个变量,来消除这种情况的存在。
它就是信息增益率,它不光考虑选择了某个分裂点后能获得的信息增益,同时还要除以分裂出来的这些节点的熵值,什么意思呢? 刚才不是分裂出来100个节点吗,那么这些节点自身熵一共等于多少呢:
再除以上面这个数后,往往信息增益率就不会那么大了。这就是传说中的从ID3 到 C4.5 的改进。
4 与熵的概念类似的基尼系数
只需要知道基尼系数和熵差不多的概念就行了,只不过量化的公式不同而已,这就说明理解了,至于公式长什么样子,用的时候去查就行了。
让我们看一下远边的大海,和海边优美的风景,放松一下吧!
5 展望
以上介绍了决策树的一些概念和分裂点选取的基本方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28