京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。 数据挖掘中决策树是一种经常要用到的技术,可以用于分析数据,同样也可以用来作预测。
决策树,其结构和树非常相似,因此得其名决策树。决策树具有树形的结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。
例如:
按照豆腐脑的冷热、甜咸和是否含有大蒜构建决策树,对其属性的测试,在最终的叶节点决定该豆腐脑吃还是不吃。
分类树(决策树)是一种十分常用的将决策树应用于分类的机器学习方法。他是一种监管学习,所谓监管学习就是给定一堆样本,每个样本都有一组属性(特征)和一个类别(分类信息/目标),这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。
其原理在于,每个决策树都表述了一种树型结构,它由它的分支来对该类型的对象依靠属性进行分类。每个决策树可以依靠对源数据库的分割进行数据测试。这个过程可以递归式的对树进行修剪。 当不能再进行分割或一个单独的类可以被应用于某一分支时,递归过程就完成了。
机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。数据挖掘中决策树是一种经常要用到的技术,可以用于分析数据,同样也可以用来作预测。从数据产生决策树的机器学习技术叫做决策树学习, 通俗说就是决策树。
目前常用的决策树算法有ID3算法、改进的C4.5算法和CART算法。
决策树的特点
1.多层次的决策树形式易于理解;
2.只适用于标称型数据,对连续性数据处理得不好;
2、ID3算法
ID3算法最早是由罗斯昆(J. Ross Quinlan)于1975年在悉尼大学提出的一种分类预测算法,算法以信息论为基础,其核心是“信息熵”。ID3算法通过计算每个属性的信息增益,认为信息增益高的是好属性,每次划分选取信息增益最高的属性为划分标准,重复这个过程,直至生成一个能完美分类训练样例的决策树。
信息熵(Entropy):
,其中p(xi)是选择i的概率。
熵越高,表示混合的数据越多。信息增益(Information Gain):
T是划分之后的分支集合,p(t)是该分支集合在原本的父集合中出现的概率,H(t)是该子集合的信息熵。
3.ID3算法与决策树的流程
(1)数据准备:需要对数值型数据进行离散化
(2)ID3算法构建决策树:
如果数据集类别完全相同,则停止划分
否则,继续划分决策树:
计算信息熵和信息增益来选择最好的数据集划分方法;
划分数据集
创建分支节点:
对每个分支进行判定是否类别相同,如果相同停止划分,不同按照上述方法进行划分。
二、Python算法实现
创建 trees.py文件,在其中创建构建决策树的函数。
首先构建一组测试数据:
0. 构造函数createDataSet:
def createDataSet():
dataSet=[[1,1,'yes'],[1,1,'yes'],[1,0,'no'],[0,1,'no'],[0,1,'no']]
labels=['no surfacing','flippers']
return dataSet,labels
在Python控制台测试构造函数
#测试下构造的数据Out[5]: ['no surfacing', 'flippers']
2.1 计算信息熵
from math import log
def calcShannonEnt(dataSet):
numEntries = len(dataSet) #nrows
#为所有的分类类目创建字典
labelCounts ={}
for featVec in dataSet:
currentLable=featVec[-1] #取得最后一列数据
if currentLable not in labelCounts.keys():
labelCounts[currentLable]=0
labelCounts[currentLable]+=1
#计算香农熵
shannonEnt=0.0
for key in labelCounts:
prob = float(labelCounts[key]) / numEntries
shannonEnt -= prob * log(prob, 2)
return shannonEnt
利用构造的数据测试calcShannonEnt:
#Python console
In [6]: trees.calcShannonEnt(myDat)
...:
Out[6]: 0.9709505944546686
2.2 按照最大信息增益划分数据集
#定义按照某个特征进行划分的函数splitDataSet在控制台中测试这两个函数:
#测试按照特征划分数据集的函数Out[14]: 0
2.3 创建决策树构造函数createTree
import operater以之前构造的测试数据为例,对决策树构造函数进行测试,在python控制台进行输入:
#决策树构造函数测试可以看到,最后生成的决策树myTree是一个多层嵌套的字典。
2.4 决策树运用于分类
#输入三个变量(决策树,属性特征标签,测试的数据)对决策树分类函数进行测试:
In [29]: reload(trees)Out[35]: 'yes'
2.5 决策树的存储
如果每次都需要训练样本集来构建决策树,费时费力,特别是数据很大的时候,每次重新构建决策树浪费时间。因此可以将已经创建的决策树(如字典形式)保存在硬盘上,需要使用的时候直接读取就好。
(1)存储函数
在工作目录下存在一个名为’classifierStorage.txt’的txt文档,该文档 保存了myTree的决策树信息,需要使用的时候直接调出使用。
三、使用Matplotlib绘制决策树
import matplotlib.pyplot as plt
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei'] #否则中文无法正常显示
decisionNode=dict(boxstyle='sawtooth',fc='0.8') #决策点样式
leafNode=dict(boxstyle='round4',fc='0.8') #叶节点样式
arrow_args=dict(arrowstyle='<-') #箭头样式
def plotNode(nodeTxt,centerPt,parentPt,nodeType):
createPlot.ax1.annotate(nodeTxt,xy=parentPt,xycoords='axes fraction',
xytext=centerPt,textcoords='axes fraction',
va='center',ha='center',bbox=nodeType,arrowprops=arrow_args)
def createPlot():
fig=plt.figure(1,facecolor='white')
fig.clf()
createPlot.ax1=plt.subplot(111,frameon=False)
plotNode('决策节点',(0.5,0.1),(0.1,0.5),decisionNode)
plotNode('叶节点',(0.8,0.1),(0.3,0.8),leafNode)
plt.show()
#测试
#获取叶节点数量(广度)
def getNumLeafs(myTree):
numLeafs=0
firstStr=list(myTree.keys())[0]#'dict_keys' object does not support indexing
secondDict=myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__=='dict':
numLeafs+=getNumLeafs(secondDict[key])
else:numLeafs+=1
return numLeafs
#获取树的深度的函数(深度)
def getTreeDepth(myTree):
maxDepth=0
firstStr=list(myTree.keys())[0]
secondDict=myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__=='dict':
thisDepth=1+getTreeDepth(secondDict[key])
else: thisDepth=1
if thisDepth > maxDepth:
maxDepth=thisDepth
return maxDepth
#定义一个预先创建树的函数
def retrieveTree(i):
listOfTrees=[{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
{'no surfacing': {0: 'no', 1: {'flippers': {0: {'head':{0:'no', 1: 'yes'}},1:'no'}}}}
]
return listOfTrees[i]
#定义在父子节点之间填充文本信息的函数
def plotMidText(cntrPt,parentPt,txtString):
xMid=(parentPt[0]-cntrPt[0])/2+cntrPt[0]
yMid=(parentPt[1]-cntrPt[1])/2+cntrPt[1]
createPlot.ax1.text(xMid,yMid,txtString)
#定义树绘制的函数
def plotTree(myTree,parentPt,nodeTxt):
numLeafs=getNumLeafs(myTree)
depth=getTreeDepth(myTree)
firstStr=list(myTree.keys())[0]
cntrPt=(plotTree.xOff+(1.0+float(numLeafs))/2/plotTree.totalW,plotTree.yOff)
plotMidText(cntrPt,parentPt,nodeTxt)
plotNode(firstStr,cntrPt,parentPt,decisionNode)
secondDict=myTree[firstStr]
plotTree.yOff=plotTree.yOff -1/plotTree.totalD
for key in secondDict.keys():
if type(secondDict[key]).__name__=='dict':
plotTree(secondDict[key],cntrPt,str(key))
else:
plotTree.xOff=plotTree.xOff+1.0/plotTree.totalW
plotNode(secondDict[key],(plotTree.xOff,plotTree.yOff),cntrPt,leafNode)
plotMidText((plotTree.xOff,plotTree.yOff),cntrPt,str(key))
plotTree.yOff=plotTree.yOff+1/plotTree.totalD
#定义主函数,来调用其它函数
def createPlot(inTree):
fig=plt.figure(1,facecolor='white')
fig.clf()
axprops=dict(xticks=[],yticks=[])
createPlot.ax1=plt.subplot(111,frameon=False,**axprops)
plotTree.totalW=float(getNumLeafs(inTree))
plotTree.totalD=float(getTreeDepth(inTree))
plotTree.xOff=-0.5/plotTree.totalW;plotTree.yOff=1.0;
plotTree(inTree,(0.5,1.0),'')
plt.show()
对绘制决策树图的函数进行测试(控制台):
In [26]: reload(treeplotter)
...:
Out[26]: <module 'treeplotter' from 'G:\\Workspaces\\MachineLearning\\treeplotter.py'>
In [27]: myTree=treeplotter.retrieveTree(0)
...:
In [28]: treeplotter.createPlot(myTree)
...:
得到决策树图:
隐形眼镜的数据集包含了患者的四个属性age,prescript,stigmatic,tearRate,利用这些数据构建决策树,并通过Matplotlib绘制出决策树的树状图。
附lenses.txt数据:
得到图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16