数据分析—问卷调查从模型到算法
每个人心中都有一个完美的另一半,如何去找到这个自己心中最认可的另一半,在慢慢人生旅途中,我们所经历过的事情,都在影响着我们的决定,影响着我们对另一半的选择,这将是一个重大的问题,关乎着自己未来的无论是物质还是精神上的幸福。这不仅仅是一个运气的问题,还包含着巨大的人生智慧在其中,用你独具慧眼的原则和标准去判断。那么如何在长长的时间轴上判断最优秀的另一半是否出现了呢?是否其中也有哲学在其中呢?是否有量化的策略使得我们成功的几率更大呢?
2.模型始于假设:
假设1:一切皆可量化,两个人在一起取决于价值,外貌、性格、潜力甚至于感情责任等等都可以被量化,最终形成一个人的基本属性——价值,价值越高则越优秀,选择最优秀的人为伴侣;
假设2:基于时间序列,每接触一个人在经历一段时间相处之后不具有可回溯性(即不考虑惊天大逆转,突然屌丝变高帅富),再次和前任谈的时候,考虑到人总是成长的,前任以新的价值属性出现,作为挑选方,对方价值的评估以当时那个时间节点不可变(人总会成长,虽然过去的认知的价值在当前可能被贬低,但被估值的人也会成长),对于价值的评估不会失误到有近乎于极端异常值的判断,在时间轴上异性有先后顺序;
假设3:挑选是单向的,每个人都在寻找心中最高价值的TA,并且知道会遇到多少个异性
模型的量化好坏取决于算法的优劣、假设的合理性,基于以上假设,去推导其中算法:
现在我们的男主,在时间轴上他会遇到N个我们的女主,男主要挑到最优秀的真命女主,假定处于第i个女主是真命女主,为了遇到这个这个真命女主,男主需要去接触k次女主,作为对女主价值的认知,以便进行判断对真命女主的价值的benchmark认知:
第一步:第i个女主是真命女主,那么概率是1/N。
第二步:benchmark的意义在与,前i个女主中,比第i个真命女主价值小的次最大价值女主出现在试探性的1到k个女主中,概率为k/(i-1),这个次最大价值女主为什么不是全域上的最大女主,因为我们遇到了第i个时,第i个女主是假定的最大价值女主,我们不需要i+1到N去挑了。同样的道理,一旦男主接触试探了k个女主,次最大价值女主在1到k时,那么k到i-1女主自然是不用再看了,第一个比1到k中出现的次最大女主价值大的就是真命女主。
那么男主试探k个女主找到真命的概率就是:
3.结论分析
综上可得,目标函数可用。对目标函数求导,发现x=1/e时,一阶导数为0,x<1/e时导数为正,x>1/e时则为负,故而目标函数收敛于x=1/e。代入x=1/e,得到
也就是说,当x=1/e的时候,在我们的男主试探(认识了N*个女主)有最大的概率即约为37%的概率遇到我们的真命女主——那个我们男主最想要的的女主。从理论模型我们回到现实,也即是说当我们的男主在时间序列上遇到了100个女主(N=100),那么我们的男主要认识37次女主(k=37,),以进行判断真命女主,在37次接触中,只要碰到从第37个开始,比前36个价值最高的女主还高,那么该女主就以最大可能性成为我们的最高价值女主。那么这就是你最认可的另一半了。
实际生活中,我们打交道的女生其实远没有那么多,所以当我们认识几个女生以后就开始“收敛”了,从心里我们就认定彼此了。上述算法的结论一般性意义在与:
1.假如你对未来伴侣特别挑剔,那你起码应该适量的多认识几个,尤其是对于那些身边异形很多的朋友,想要遇到自己中意的,可能就需要更多才能有一个比较理性的判断;
2.从“收敛”性看出,不是认识的异形越多越多就会遇到更优秀的人,往往越到最后就会成空。成为一个人的初恋意味着成为别人的“收敛”节点可能性更大,假如你还可以重新加入TA的挑选队列,反言之初恋往往没有好下场也是同样的道理,人是会变的,价值观自然也会变;
3.因为资源有限,好的总是出手或者被出手快,导致身边的异性偏少,越优秀的会越快“收敛”;反言之越优秀可能最后就剩了下来,这是两个极端情况,实际生活中并不少见,晚点结婚对于现代更开放的年轻人来说也是有优势的,处于中间则是最惨的——所以这大约也是被逼婚的重要原因。
更多的结论在实际调查中是有待调研得出的......
我们要做的是能以最大化的几率遇到最优秀的人,以最高的效率遇到你最中意的人,然后就放手去追TA吧!当然,也要去认识到模型的短板,毕竟找到另一半是一个涉及方方面面,是个极为复杂的问题。假设1缺陷在与量化的困难,一个人的价值不是裸露在外面就可以看到的,不然也不会有这么多遇人不淑;假设3的缺陷在与如何去确认N值的大小,虽然一个时期内经过一定时间的沉淀,身边的异性是差不多固定的......这些都不用去管,重要的是模型通过了,只需要添加一些问题:你身边的异性朋友有多少?你的性格是外向、一般、宅男?等等这些问题,只要人们对美的向往心无限,那么我的模型和算法就有可取之处。
从上述模型和算法,我们要知道,做数据分析和数据挖掘必须有着对数据的敏感性,假如过去曾经发生的事对于未来没有任何影响的话,那么TA一定是失败的,我觉得对于任何其他职业也是一样。在真正的数据挖掘和分析师看来,将来的事从来都不是随机,发生过的事情进过一定的“惩罚机制”去放大效果,对于将来的影响是巨大的。一定几率的事可以代表着将近绝对的概率发生,这并不是一句矛盾的话。这正是机器学习的核心所在,细小的变动,于细枝末节处慢慢的体现出对最终结果的影响,发生过的数据一点点的推进学习的步伐,最后就能学习到一定规律的东西。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03