京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析—问卷调查从模型到算法
每个人心中都有一个完美的另一半,如何去找到这个自己心中最认可的另一半,在慢慢人生旅途中,我们所经历过的事情,都在影响着我们的决定,影响着我们对另一半的选择,这将是一个重大的问题,关乎着自己未来的无论是物质还是精神上的幸福。这不仅仅是一个运气的问题,还包含着巨大的人生智慧在其中,用你独具慧眼的原则和标准去判断。那么如何在长长的时间轴上判断最优秀的另一半是否出现了呢?是否其中也有哲学在其中呢?是否有量化的策略使得我们成功的几率更大呢?
2.模型始于假设:
假设1:一切皆可量化,两个人在一起取决于价值,外貌、性格、潜力甚至于感情责任等等都可以被量化,最终形成一个人的基本属性——价值,价值越高则越优秀,选择最优秀的人为伴侣;
假设2:基于时间序列,每接触一个人在经历一段时间相处之后不具有可回溯性(即不考虑惊天大逆转,突然屌丝变高帅富),再次和前任谈的时候,考虑到人总是成长的,前任以新的价值属性出现,作为挑选方,对方价值的评估以当时那个时间节点不可变(人总会成长,虽然过去的认知的价值在当前可能被贬低,但被估值的人也会成长),对于价值的评估不会失误到有近乎于极端异常值的判断,在时间轴上异性有先后顺序;
假设3:挑选是单向的,每个人都在寻找心中最高价值的TA,并且知道会遇到多少个异性
模型的量化好坏取决于算法的优劣、假设的合理性,基于以上假设,去推导其中算法:
现在我们的男主,在时间轴上他会遇到N个我们的女主,男主要挑到最优秀的真命女主,假定处于第i个女主是真命女主,为了遇到这个这个真命女主,男主需要去接触k次女主,作为对女主价值的认知,以便进行判断对真命女主的价值的benchmark认知:
第一步:第i个女主是真命女主,那么概率是1/N。
第二步:benchmark的意义在与,前i个女主中,比第i个真命女主价值小的次最大价值女主出现在试探性的1到k个女主中,概率为k/(i-1),这个次最大价值女主为什么不是全域上的最大女主,因为我们遇到了第i个时,第i个女主是假定的最大价值女主,我们不需要i+1到N去挑了。同样的道理,一旦男主接触试探了k个女主,次最大价值女主在1到k时,那么k到i-1女主自然是不用再看了,第一个比1到k中出现的次最大女主价值大的就是真命女主。
那么男主试探k个女主找到真命的概率就是:
3.结论分析
综上可得,目标函数可用。对目标函数求导,发现x=1/e时,一阶导数为0,x<1/e时导数为正,x>1/e时则为负,故而目标函数收敛于x=1/e。代入x=1/e,得到
也就是说,当x=1/e的时候,在我们的男主试探(认识了N*个女主)有最大的概率即约为37%的概率遇到我们的真命女主——那个我们男主最想要的的女主。从理论模型我们回到现实,也即是说当我们的男主在时间序列上遇到了100个女主(N=100),那么我们的男主要认识37次女主(k=37,),以进行判断真命女主,在37次接触中,只要碰到从第37个开始,比前36个价值最高的女主还高,那么该女主就以最大可能性成为我们的最高价值女主。那么这就是你最认可的另一半了。
实际生活中,我们打交道的女生其实远没有那么多,所以当我们认识几个女生以后就开始“收敛”了,从心里我们就认定彼此了。上述算法的结论一般性意义在与:
1.假如你对未来伴侣特别挑剔,那你起码应该适量的多认识几个,尤其是对于那些身边异形很多的朋友,想要遇到自己中意的,可能就需要更多才能有一个比较理性的判断;
2.从“收敛”性看出,不是认识的异形越多越多就会遇到更优秀的人,往往越到最后就会成空。成为一个人的初恋意味着成为别人的“收敛”节点可能性更大,假如你还可以重新加入TA的挑选队列,反言之初恋往往没有好下场也是同样的道理,人是会变的,价值观自然也会变;
3.因为资源有限,好的总是出手或者被出手快,导致身边的异性偏少,越优秀的会越快“收敛”;反言之越优秀可能最后就剩了下来,这是两个极端情况,实际生活中并不少见,晚点结婚对于现代更开放的年轻人来说也是有优势的,处于中间则是最惨的——所以这大约也是被逼婚的重要原因。
更多的结论在实际调查中是有待调研得出的......
我们要做的是能以最大化的几率遇到最优秀的人,以最高的效率遇到你最中意的人,然后就放手去追TA吧!当然,也要去认识到模型的短板,毕竟找到另一半是一个涉及方方面面,是个极为复杂的问题。假设1缺陷在与量化的困难,一个人的价值不是裸露在外面就可以看到的,不然也不会有这么多遇人不淑;假设3的缺陷在与如何去确认N值的大小,虽然一个时期内经过一定时间的沉淀,身边的异性是差不多固定的......这些都不用去管,重要的是模型通过了,只需要添加一些问题:你身边的异性朋友有多少?你的性格是外向、一般、宅男?等等这些问题,只要人们对美的向往心无限,那么我的模型和算法就有可取之处。
从上述模型和算法,我们要知道,做数据分析和数据挖掘必须有着对数据的敏感性,假如过去曾经发生的事对于未来没有任何影响的话,那么TA一定是失败的,我觉得对于任何其他职业也是一样。在真正的数据挖掘和分析师看来,将来的事从来都不是随机,发生过的事情进过一定的“惩罚机制”去放大效果,对于将来的影响是巨大的。一定几率的事可以代表着将近绝对的概率发生,这并不是一句矛盾的话。这正是机器学习的核心所在,细小的变动,于细枝末节处慢慢的体现出对最终结果的影响,发生过的数据一点点的推进学习的步伐,最后就能学习到一定规律的东西。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22