
SPSS最优尺度:分类主成分分析
一、分类主成分分析(分析-降维-最优尺度)
1、概念:此过程在减少数据维数的同时量化分类变量。分类主成份分析也表示为缩写词CATPCA(代表categorical principal components analysis)。主成份分析的目标是将初始变量集缩减为表示初始变量中发现的大部分信息的较小不相关主成份集合。当大量变量妨碍有效解释对象(主体和单元)间关系时,该方法最为有用。通过减少维数,您只需解释少量主成份,而不是大量变量。
标准主成份分析假设数值变量间为线性关系。另一方面,通过最优尺度方法,可以将变量调整为不同级别。分类变量在指定维数内得到最优量化。因此,可以为变量间的非线性关系建模。
2、示例。分类主成份分析可用于以图形方式显示工作类别、工作部门、地区、旅行量(高、中、低)和工作满意度之间的关系。您可能会发现两个维占据了大量方差。第一维可能将工作类别与地区分开,而第二维可能将工作部门与旅行量分开。您可能还会发现较高的工作满意度与中等旅行量相关。
3、统计量和图。频率;缺失值;最佳度量水平;众数;按质心坐标、矢量坐标、每变量和每维总计解释的方差;矢量量化变量的成份载荷;类别量化和坐标;迭代历史记录;转换后变量和相关矩阵特征值的相关性;初始变量与相关矩阵特征值的相关性;对象得分;类别图;联合类别图;转换图;残差图;投影质心图;对象图;双标图;三标图和成份载荷图。
4、数据。字符串变量值总是按升序字母数值顺序转换为正整数。用户定义的缺失值、系统缺失值以及小于1的值都视为缺失值;可重新编码值小于1的变量,或者给值小于1的变量加上一个常数,以使其成为非缺失值。
5、假设。数据必须至少包含三个有效个案。该分析基于正整数数据。离散化选项通过将其值分组成具有接近正态分布的类别,将自动分类小数值变量,并且将自动把字符串变量的值转换为正整数。可指定其他离散化方案。
6、相关过程。将所有变量调整为数值级别对应于标准主成份分析。在标准线性主成份分析中使用转换后的变量可获得交替绘图功能。如果所有变量都有多名义尺度级别,则分类主成份分析等同于多重对应分析。如果需要处理的是变量集,则应使用分类(非线性)典型相关性分析。
二、选项(分析-降维-最优尺度-分类主要成分-选项)
1、附加对象。指定要其成为附加对象的对象的个案编号,或者对象范围的第一个和最后一个个案编号,然后单击添加。继续操作,直到指定完所有附加对象。如果将某个对象指定为附加对象,则对于该对象将忽略个案权重。
2、正态化方法。可以指定用于标准化对象得分和变量的五个选项之一。给定分析中只能使用一种正态化方法。
2.1、主要变量。此选项可优化变量之间的关联。对象空间中的变量坐标是成份载入(与主成分的相关性,如维和对象得分)。如果您主要对变量之间的相关性感兴趣,这将非常有用。
2.2、主要对象。此选项可优化对象间的距离。如果您主要对对象之间的区别或相似性感兴趣,这将非常有用。
2.3、对称。如果主要对对象和变量之间的关系感兴趣,则使用此标准化选项。
2.4、独立。如果您想单独检查对象之间的距离和变量之间的相关性,请使用此标准化选项。
2.5、定制。可指定封闭区间[–1, 1]中的任何实数值。值为1等同于“主要对象”方法;值为0等同于“对称”方法;值为–1等同于“主要变量”方法。通过指定大于–1小于1的值,可在对象和变量上分布特征值。此方法对于制作合适的双标图或三标图很有用。
3、标准。可以指定该过程可在其计算中执行的最大迭代次数。还可以选择收敛标准值。如果上两次迭代之间的总拟合之差小于收敛值,或者达到了最大迭代次数,则算法停止迭代。
4、标注图。可用于指定在图中将使用变量和值标签还是变量名称和值。还可指定标签的最大长度。
5、图维数。可用以控制在输出中显示的维数。
5.1、显示解中的所有维数。解中的所有维数都显示在散点图矩阵中。
5.2、限制维数。显示的维数限制为绘制的对。如果限制维数,则必须选择要绘制的最低和最高维数。最低维数的范围可从1到解中的维数减1,并且针对较高维数绘制。最高维数值的范围可从2到解中的维数,表示要在绘制维数对时使用的最高维数。此指定项适用于所有请求的多维图。
6、配置。可从包含配置的坐标的文件中读取数据。文件中的第一个变量应包含第一维的坐标,第二个变量应包含第二维的坐标,依此类推。
6.1、初始。指定的文件中的配置将用作分析起点。
6.2、固定。指定的文件中的配置将用于拟合变量。拟合的变量必须选择作为分析变量,但是因为配置是固定的,所以它们视为补充变量(因此不需要选择它们作为补充变量)。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15