
一、缺失值:
具有缺失值的个案会引发严重的问题,因为典型的建模过程会简单地从分析中丢弃这些个案。如果存在少量缺失值(大约低于个案总数的5%),且这些值可以被认为随机缺失,即值的缺失不依赖于其他值,则列表删除的典型方法相对比较“安全”。“缺失值”选项可以帮助确定列表删除是否足够,并在必要时提供其他缺失值处理方法。
1、多重插补:过程提供了缺失数据模式分析,着眼于最终对缺失值进行多重插补。这意味着会产生多个版本的数据集,它们分别包含各自的插补值集。在执行统计分析时,汇集了针对所有插补数据集的参数估计,因此提供的估计结果通常比单个插补更为准确。
2、缺失值分析:提供了略微不同的描述性工具集,用以分析缺失数据(尤其是Little’sMCAR检验),并包括多种单一插补方法。注意,多重插补通常被认为优于单一插补。
缺失值分析有助于解决由不完整的数据造成的若干问题。如果带有缺失值的个案与不带缺失值的个案有着根本的不同,则结果将被误导。此外,缺失的数据还可能降低所计算的统计量的精度,因为计算时的信息比原计划的信息要少。另一个问题是,很多统计过程背后的假设都基于完整的个案,而缺失值可能使所需的理论复杂化。
1、示例。在评估白血病治疗方式时,将测量几个变量。但是,并不是针对每个患者都进行所有的测量。缺失数据的模式以表格形式显示出来,表现为随机的。EM分析用于估计均值、相关性和协方差。它还用来确定数据正在随机完全缺失。缺失值然后将由归因值替换,并保存到新的数据文件中以供进一步分析。
2、统计量。单变量统计量,包括非缺失值个数、均值、标准差、缺失值个数以及极值个数。使用列表法、成对法、EM法或回归法的估计均值、协方差矩阵以及相关性矩阵。对EM结果进行的Little的MCAR检验。按各种方法进行的均值总计。对于按缺失和非缺失值定义的组:t检验。对于所有变量:按个案与变量显示的缺失值模式。
3、数据。数据可以是分类数据或定量数据(刻度或连续)。尽管如此,您只能为定量变量估计统计数据并插补缺失数据。对于每个变量,必须将未编码为系统缺失值的缺失值定义为用户缺失值。例如,如果将对问卷项的回答不知道编码为5,并且您希望将其视为缺失,则对于此项应将5编码为用户缺失值。
4、频率权重。此过程接受频率(复制)权重。忽略复制权重为负值或零值的个案。非整数权重被截断。
5、假设。列表法、成对法和回归法估计都基于这样的假设:缺失值的模式不依赖于数据值。(此条件又称为完全随机缺失,即MCAR。)因此,当数据为MCAR时,所有估计方法(包括EM法)提供相关性和协方差的一致无偏估计。违反MCAR假设可能导致由列表法、成对法和回归法生成的有偏差的估计。如果数据不是MCAR,则您需要使用EM估计。
6、相关过程。很多过程都允许您使用列表或成对估计。“线性回归和因子分析”允许用均值替换缺失值。预测附加模块提供了几种方法,可用于按时间序列替换缺失值。
您可以使用列表法(仅限完整个案)、成对法、EM(期望最大化)法和/或回归法选择估计均值、标准差、协方差和相关性。您还可以选择插补缺失值(估计替换值)。注意,在解决缺失值问题方面,多重插补通常被认为优于单一插补。Little’s MCAR检验对于确定是否需要进行插补方面仍然有效。
1、列表法:此方法仅使用完整个案。一旦任何分析变量具有缺失值,计算中将忽略该个案。
2、成对法:此方法参见分析变量对,并只有当其在两种变量中都具有非缺失值时才使用个案。频率、均值以及标准差是针对每对分别计算的。由于忽略个案中的其它缺失值,两个变量的相关性与协方差不取决于任何其它变量的缺失值。
3、EM法:此方法假设一个部分缺失数据的分布并基于此分布下的可能性进行推论。每个迭代都包括一个E步骤和一个M步骤。在给定观察值和当前参数估计值的前提下,E步骤查找“缺失”数据的条件期望值。这些期望值将替换“缺失”数据。在M步骤中,即使填写了缺失数据,也将计算参数的最大似然估计值。“缺失”包含在引号中,因为缺失值不是直接填写的。而其函数用于对数似然。
用于检验值是否完全随机丢失(MCAR)的Roderick J. A. Little卡方统计量作为EM矩阵的脚注印刷。对于此检验,原假设就是数据完全随机缺失且0.05水平的p值显著。若值小于0.05,则数据将不会完全随机缺失。数据可能随机缺失(MAR)或不随机缺失(NMAR)。您无法假设一个或其它数据缺失,而是需要分析数据以确定数据是如何缺失的。
4、回归法:此方法计算多个线性回归估计值并具有用于通过随机元素增加估计值的选项。对于每个预测值,其过程可以从一个随机选择的完整个案中添加一个残差,或者从t分布中添加一个随机正态偏差,一个随机偏差(通过残差均值方的平方根测量)。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14