
spss modeler出现使用错误提
1、对字段“compensation汇总导出”指定的类型不充分
问题:
为了分析需要,我加了一个“字段选项”——“导出”节点, 并将这个汇总字段类型设置为“连续”。
然后用K-means算法聚类。结果如第个流程图所示:[2016-08-12 15:59:23] 对字段“compensation汇总导出”指定的类型不充分。
我在导出节点后增加一个“类型”节点,然后用K-means算法聚类。问题得到解决。如流程1所示。
问题解析:
建模前需要要用“字段选项”——“类型”节点的“read values”按钮读该字段的值,并指定变量(字段)的输入和输出方向。之所以错误提示,初步理解就是读取新建“汇总”字段值!
只在“导出”节点新建字段并设置字段类型是不足够的!必须对其设置:类型——读值,就算设置类型“无”,也得设置!
2、导出问题:如果子项只要有一项值为$null$,则导出结果的和值为$null$。这样极易导致错误!!!
这个问题有点和Tableau类似(Tableau是通过“计算项”对子项以isnull()函数实现空值置为“0”)。
要实现将几个子项通过“导出”节点功能求和,怎么才能实现正常值呢?
通过“字段设置”——“填充”功能则可实现空值设为0!
3、无法由算法生成模型
数据源选项可对字段进行过滤、类型变换等基本操作。更多操作需要通过“字段选项”、“记录选项”进行进一步操作。
在字段页签选项,有“导出”项,有生成新字段功能,如已经存在字段A、B,那么可利用导出功能生成A/B,并将其命名为C.
另外,只有对字段进行“角色”设置相应的属性才能对其建模(软件下边的“建模”页签,选择一种“算法”,蓝色图标),点击“运行”生成模型(黄色钻石状图标)。
注意:(有些算法需要将有些字段角色设置为“目标”(就像函数y=f(x),没有目标y,x,就谈不到函数的问题!),但有些算法需要将字段角色设置成“输入”等其它角色属性即可,根据算法而定!)本例中:将CUSTACT作为目标字段,其它作为输入字段,选择了算法logistic,并生成对应的模型。
4、为什么Spss Modeler 读取字段,显示无类型,应该怎么办?
吧最大集大小勾掉就行了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15