京公网安备 11010802034615号
经营许可证编号:京B2-20210330
后Excel时代,如何变身讲述“数据故事”的高手?
如何看待数据分析师这项职业?
CDA记者:如今, 数据分析师是一个很热门的职业,薪资水平普遍很高。很多人也因为高薪,纷纷向数据分析师发展。您如何看待这种现象?
刘鹏元:首先,对求职者来说,工资导向是很正常的市场规律,前提是你要具备相应的技能和能力。其次,对企业来说,正是因为“大数据时代”给其带来了新的挑战和机会,“数据分析师”、“数据科学家”这样的岗位,才在企业内部变得愈加重要了。
数据小白生存之道
CDA记者:对于行业小白来说,想要成为专业的数据分析师,需要具备怎样的技能?
刘鹏元:在大数据时代,“小白”必须成长为“专家”才能够真正立足。如果一个普通的销售人员在使用了工具后对于数据的分析能力都比一个“小白”强,那企业为什么需要这样的数据分析师呢?在大数据时代,一个优秀的数据分析师至少需要具备以下三方面的能力:
首先需要掌握更加丰富的大数据处理技能,包括统计分析、可视化工具、大数据处理框架、数据挖掘等;
其次,要对企业业务有更深的理解,能够根据企业自身特点建立分析模型和方法,不断地进行探索式分析;
最后,能把分析结果以可视化的形式展现出来,让别人秒懂你的结论,成为讲述“数据故事”的高手。
除了要掌握专业技能外,还应该注意以下几点,从而更快的适应市场需求。
l 多读科技类新闻和文章,关注大趋势和行业动态;
l 多与行内人员交流、取经;
l 对于与自身工作交集较大的职位,多花时间了解其特点和工作内容,便于工作中快速沟通和协作;
l 多反思和复盘工作中的问题,逐步形成一套行之有效的工作方法和思考方式;
l 多站在上司和老板的角度思考工作目标。
讲“数据故事”的工具选择
CDA: 现在市场上充斥着以Excel为代表的传统工具和以BI为代表的新型工具,那么您是如何看待新旧BI工具的更替?数据分析师选择工具时关注的点应该有哪些?
刘鹏元:当大数据时代到来时,我们就已经进入了“后Excel时代”。“后Excel时代”的含义是:Excel已经成为了“小数据”的专用工具,“大数据”需要更强大、更智能、更具探索性的新工具。所以,新旧工具的交替是无法避免的,谁都无法阻挡时代的潮流。数据分析师选择工具时,可以从以下几点考察:
l 是否能接入企业各种业务系统,整合多源异构数据?
l 是否拥有实时的数据处理能力?
l 是否操作简单,简单拖拽即可生成可视化图表?
l 是否提供探索式分析功能,类似数据分析维度和颗粒度都可以随意变换?
l 是否拥有智能的图表和模型推荐?
l 是否可以云端协作和分享,从而满足各种移动办公的场景的需求?
关于数据分析师个人发展的一些建议
刘鹏元:其实各行各业都是相通的,分享4个关键词吧:阅读、思考、交流、实战。
1、要保证大的阅读量,包括阅读各类文章和图书,这是基础;
2、阅读和工作中如有疑问和发现,就多思考和总结,这是关键;
3、多向牛人请教,这是很有益的补充;
4、学会和享受“以战代练“,通过实际的工作来提升自身的能力,在反思和复盘中提高,这是根本。
人物介绍
刘鹏元
DataHunter产品总监,负责公司企业数据分析平台的整体产品工作。拥有多年的产品经理工作经验,其中大部分时间都在从事数据类产品工作,包括搜索引擎、第三方数据平台、企业BI产品等。
关于DataHunter
DataHunter(北京数猎天下科技有限公司)是一家专注于数据可视化分析展示的科技公司,成立于2016年。基于先进的探索式数据分析技术,DataHunter致力于为企业提供简单易用的业务数据可视化分析产品及数据大屏设计展示服务,帮助用户发现问题并改进业务,从而驱动企业向数字化运营转变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26