
据国外媒体报道,我们使用的导航地图近十年已经发生了翻天覆地的变化。上世纪90年代,我们还在用纸质地图寻找目的地。而现在基本只需要服从Siri或她的谷歌竞争对手的导航指令。
不过这些导航指令背后隐藏着大多数人无法想象的众多数据。目前由于谷歌已经获得了极其庞大的地图数据,他们开始采用大数据方法,或谷歌称之为“地面真相”的算法和细致的人工努力相结合的方法,为用户提供更详尽的地图信息。该项目于2008年推出,但它一直处于保密状态,直到几年前才公开。它持续增长,现已覆盖51个国家。这一算法在提取卫星、空中和街景视图的信息时发挥了巨大的作用。
谷歌“地面真相”算法可以识别的街景信息
谷歌2007年推出了街景服务,通过让人们看到目的地周围的环境来提高用户体验。谷歌地图副总裁布莱恩·麦克伦登(Brian McClendon)。表示,“我们很快就意识到做地图的最佳途径之一,就是拥有全世界的街头照片。”
随着街景收集数据的增长,抽查他们的数据已经不是很好的解决方案。谷歌地图产品经理马尼克·古普塔(Manik Gupta)表示,现在街景车已经行驶700多万英里,覆盖美国99%的公共道路,“它实际上使我们能够利用算法建立提取信息之外的新数据层。”
这些算法借用计算机视觉和机器学习的方法来提取路边的街道编号、企业名称、限速交通标志等细节信息。 不过很多信息还是非常难以提取,麦克伦登表示,“停止标记常常很容易被忽略。转弯限制对于导航来说也很重要,但对于谷歌的捕捉算法还很难处理。因为这些标记箭头可能是被画在道路上,它们可以是不同的颜色和大小。车道标记的分析更难,因为他们并不一致。”
谷歌地图普通用户不可见的转弯限制信息。
路牌也是非常重要的信息。驾驶者听到的导航指示如果能匹配他们看到的,那么他们就能更好的被指引。但有时街道标志使用的拼写或缩写导致了很多麻烦。“匹配标志上的文字实际上是一个很困难的任务。”
另外,谷歌的算法还可以利用卫星和航空影像提取建筑物的轮廓和高度。美国大多数的建筑物现在都可以在谷歌地图上找到。对于像西雅图太空针塔这样的标志性建筑,计算机视觉技术已经可以提取出详细的3D模型。谷歌曾表示,它收购高分辨率卫星图像公司Skybox就是为了提高其地图的准确性。
计算机视觉技术提取的标志性建筑物3D模型
然而,卫星和算法的能力还是有限。为了提供最好的体验,谷歌雇佣了一只由人类组成的团队,手动检查并使用内部程序Atlas纠正地图的错误。谷歌公司以外很少有人见过这一应用。
这一人工检查团队看到的地图类似于谷歌地图的卫星地图混合视图,但带有没见过的彩色线条和符号。例如,道路根据行进方向进行了颜色编码。绿色和红色箭头指示了给定的交叉路口的可能前进方向。工作人员可以点击屏幕一侧的按钮,拖曳、切换或关闭各种层,控制街景视图拍摄的交通标志的出现和消失。这些工作人员每天要检查数以千计来自谷歌地图用户的错误报告,并根据需要进行修复。
工作人员可以手动将地图道路(左上)对准卫星图像
古普塔还展示了一张显示道路优先级的地图,线的宽度代表交通流量。谷歌一直用手机的位置信号映射交通条件。不过古普塔承认,位置信号也可以是其他信息的良好来源,比如转弯限制或者单行线。但他拒绝详细说明,“谷歌在很多地方使用了位置信息,但我不能谈论具体的东西。”
除了职业地图纠错团队,谷歌还得到来自MapMaker计划的帮助。2011年谷歌推出了普通用户可以参与的地图纠错项目,现在的该项目遍及220个国家。目标是提高谷歌地图在发展中国家和其他地区的准确度。因为在那里无法获得详细的地图源,“我们招募用户添加对于他们很重要的地图信息。我们会提供工具和卫星图像,因此他们可以很轻松的进行修正。”本文来源:CDA数据分析师官网
用户可以提供公园、步道以及其他街景车无法进入的地方的信息。麦克伦登本人就曾帮助绘制Windy山的登山路径,“我用GPS记录了我登山的路径,完善了更多的精确路线。”
当你在笔记本电脑或手机上使用谷歌地图时,表面的信息之下隐藏着更多的数据。不只是道路的布局,还包括链接一个点到另一个点的逻辑信息。信息不只是建筑物的形状,也许未来谷歌地图只会不断的细节化。最终,呈现出来的可能是让人震惊的世界3D虚拟图像。
道路标志可利用算法从街景中提取,从而提供交通信息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18