SPSS数据分析—多维尺度分析
在市场研究中,有一种分析是研究消费者态度或偏好,收集的数据是某些对象的评分数据,这些评分数据可以看做是对象间相似性或差异性的表现,也就是一种距离,距离近的差异性小,距离远的差异性大。而我们的分析目的也是想查看这些对象间的差异性或相似性情况,此时由于数据的组成形式不一样,因此不能使用对应分析,而需要使用一种专门分析此问题的方法——多维尺度分析(MDS模型)。多维尺度分析和对应分析类似,也是通过可视化的图形阐述结果,并且也是一种描述性、探索性数据分析方法。
基于以上,我们可以得知,多维尺度分析经常使用在市场研究中:
① 可以确定空间的维数(变量、指标),以反映消费者对不同品牌的认知,并且在由这些维构筑的空间中,标明某关注品牌和消费者心目中理想品牌的位置,选择的品牌不宜过少也不宜过多,一般7-9个。
② 可以比较消费者和非消费者对企业形象的感觉。
③ 在进行市场细分时,可以在同一空间对品牌和消费者定位,然后把具有相似感觉的消费者分组、归类。
④ 在新产品开发方面,通过在空间图上寻找间隙,可以发现由这些间隙为企业带来的潜在契机。
⑤ 在广告效果的评估方面,可以用空间图去判定一个广告是否成功地实现了期望的品牌定位。
⑥ 在价格策略方面,通过比较加入与不加入价格轴的空间图,可以推断价格的影响强度。
⑦ 在分销渠道策略方面,利用空间图可以判断品牌对不同零售渠道的适应性,从而为制定有效的分销渠道提供依据。
在市场研究中,我们要注意的是选择的品牌数量要适中,并且分析的问题要明确,每组数据只能分析一个问题,比如对一组饮料产品收集的数据不能既反映口感又反映价格。
多维尺度分析收集的数据值大小必须能够反应两个研究对象的相似性或差异性程度。这种数据叫做邻近数据,所有研究对象的邻近数据可以用一个邻近矩阵表示。反映邻近的测量方式有:
相似性-数值越大对应着研究对象越相似。 差异性-数值越大对应着研究对象越不相似。
测量邻近性数据的类型有:
①两个地点(位置)之间的实际距离。(测量差异性)
②两个产品之间相似性或差异性的消费者心理测量。(差异性或相似性)
③两个变量的相关性测量。(相关系数测量相似性)
④从一个对象过渡到另一个对象的转换概率。例如概率反应了消费者对品牌或产品偏好的变化。(测量相似性)
⑤反映两种事物在一起的程度。例如:用早餐时人们经常将哪两种食品搭配在一起。(测量相似性)
⑥谁喜欢谁,谁是谁的领导,谁传递给谁信息,谁是谁的上游或下游等等社会网络数据等(测量相似性)
邻近数据即可以直接测量(距离),也可以通过计算得到(变量间的相关系数)。
多维尺度模型根据测量的尺度不同可以分为:
①古典MDS模型,针对收集的数据为比率和区间,也就是直接可以测量距离的情况
②非度量MDS模型,收集的数据为有序数据,针对无法直接测量距离,只能通过评分测量的情况
根据测量的个体数量不同,可以分为
①不考虑个体差异的MDS模型(ALSCAL),即单个测量个体
②考虑个体差异的MDS模型(INDSCAL),即多个测量个体
这里说的测量个体并不是选取的测量指标,而是实际测量的个体,相当于样本。
由于多维尺度分析是用来分析差异性或相似性的,也带有度量的含义,因此在SPSS中也将其归在了度量过程中。共有三个过程,下面我们来分别介绍
一、不考虑个体差异的MDS模型
本案例进行的是最基本的多维尺度分析,目的是分析每个城市的距离情况,只有一个个体,并且收集的数据直接是距离数据,因此采用古典MDS模型,数据组成如下
分析—度量—多维尺度(ALSCAL)
二、考虑个体差异的MDS模型
实际分析中,我们往往不会只选取一个样本,比如受访者肯定不止一个,那么收集上来的数据会变成多个矩阵,如果将其浓缩为一个矩阵会损失大量数据信息,而直接使用重复多维尺度模型当然也是可以的,但是该方法没有考虑个体间差异,因此并非最佳选择。而考虑个体差异的MDS模型不仅分析对象间的结构,而且会进一步分析对象间的差异。
本例中识10位受访者对10种饮料的口感差异性评分,分值越大差异越大,10位受访者的数据形成了10个数据阵,数据如下
下面我们选用考虑个体差异的MDS模型进行分析
三、基于最优尺度变换的MDS模型
将最优尺度变换引入MDS模型式对传统MDS模型的拓展,我们来看使用最优尺度变换的MDS模型再来分析一下饮料的数据
分析—度量—多维尺度(PROXSCAL)
四、多维展开模型
以上的MDS模型不管是传统MDS还是非度量MDS,都是要求各对象间不存在分组,分析时是直接考虑各对象两两间的距离远近。但是实际问题中,可能会遇到对象被分为两组,我们是想考察这多个组之间的相似性或差异性,而对组内对象间的距离远近并不关心,这时传统的MDS模型就不再适合,而需要采用多维展开模型进行分析。
看一个例子,现在收集了两组变量,一组是场景,共15个水平,另一组是行为,共15个水平。现在想分析这两组变量间的差异性或相似性,数据如下
我们用多维展开模型进行分析
分析—度量—多维展开(PREFSCAL)
接下来会分别输出行列变量的坐标,以及行列变量在二维分布图,但是我们实际上更关心的是行列变量的联合分布图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03