
SPSS数据分析—多维尺度分析
在市场研究中,有一种分析是研究消费者态度或偏好,收集的数据是某些对象的评分数据,这些评分数据可以看做是对象间相似性或差异性的表现,也就是一种距离,距离近的差异性小,距离远的差异性大。而我们的分析目的也是想查看这些对象间的差异性或相似性情况,此时由于数据的组成形式不一样,因此不能使用对应分析,而需要使用一种专门分析此问题的方法——多维尺度分析(MDS模型)。多维尺度分析和对应分析类似,也是通过可视化的图形阐述结果,并且也是一种描述性、探索性数据分析方法。
基于以上,我们可以得知,多维尺度分析经常使用在市场研究中:
① 可以确定空间的维数(变量、指标),以反映消费者对不同品牌的认知,并且在由这些维构筑的空间中,标明某关注品牌和消费者心目中理想品牌的位置,选择的品牌不宜过少也不宜过多,一般7-9个。
② 可以比较消费者和非消费者对企业形象的感觉。
③ 在进行市场细分时,可以在同一空间对品牌和消费者定位,然后把具有相似感觉的消费者分组、归类。
④ 在新产品开发方面,通过在空间图上寻找间隙,可以发现由这些间隙为企业带来的潜在契机。
⑤ 在广告效果的评估方面,可以用空间图去判定一个广告是否成功地实现了期望的品牌定位。
⑥ 在价格策略方面,通过比较加入与不加入价格轴的空间图,可以推断价格的影响强度。
⑦ 在分销渠道策略方面,利用空间图可以判断品牌对不同零售渠道的适应性,从而为制定有效的分销渠道提供依据。
在市场研究中,我们要注意的是选择的品牌数量要适中,并且分析的问题要明确,每组数据只能分析一个问题,比如对一组饮料产品收集的数据不能既反映口感又反映价格。
多维尺度分析收集的数据值大小必须能够反应两个研究对象的相似性或差异性程度。这种数据叫做邻近数据,所有研究对象的邻近数据可以用一个邻近矩阵表示。反映邻近的测量方式有:
相似性-数值越大对应着研究对象越相似。 差异性-数值越大对应着研究对象越不相似。
测量邻近性数据的类型有:
①两个地点(位置)之间的实际距离。(测量差异性)
②两个产品之间相似性或差异性的消费者心理测量。(差异性或相似性)
③两个变量的相关性测量。(相关系数测量相似性)
④从一个对象过渡到另一个对象的转换概率。例如概率反应了消费者对品牌或产品偏好的变化。(测量相似性)
⑤反映两种事物在一起的程度。例如:用早餐时人们经常将哪两种食品搭配在一起。(测量相似性)
⑥谁喜欢谁,谁是谁的领导,谁传递给谁信息,谁是谁的上游或下游等等社会网络数据等(测量相似性)
邻近数据即可以直接测量(距离),也可以通过计算得到(变量间的相关系数)。
多维尺度模型根据测量的尺度不同可以分为:
①古典MDS模型,针对收集的数据为比率和区间,也就是直接可以测量距离的情况
②非度量MDS模型,收集的数据为有序数据,针对无法直接测量距离,只能通过评分测量的情况
根据测量的个体数量不同,可以分为
①不考虑个体差异的MDS模型(ALSCAL),即单个测量个体
②考虑个体差异的MDS模型(INDSCAL),即多个测量个体
这里说的测量个体并不是选取的测量指标,而是实际测量的个体,相当于样本。
由于多维尺度分析是用来分析差异性或相似性的,也带有度量的含义,因此在SPSS中也将其归在了度量过程中。共有三个过程,下面我们来分别介绍
一、不考虑个体差异的MDS模型
本案例进行的是最基本的多维尺度分析,目的是分析每个城市的距离情况,只有一个个体,并且收集的数据直接是距离数据,因此采用古典MDS模型,数据组成如下
分析—度量—多维尺度(ALSCAL)
二、考虑个体差异的MDS模型
实际分析中,我们往往不会只选取一个样本,比如受访者肯定不止一个,那么收集上来的数据会变成多个矩阵,如果将其浓缩为一个矩阵会损失大量数据信息,而直接使用重复多维尺度模型当然也是可以的,但是该方法没有考虑个体间差异,因此并非最佳选择。而考虑个体差异的MDS模型不仅分析对象间的结构,而且会进一步分析对象间的差异。
本例中识10位受访者对10种饮料的口感差异性评分,分值越大差异越大,10位受访者的数据形成了10个数据阵,数据如下
下面我们选用考虑个体差异的MDS模型进行分析
三、基于最优尺度变换的MDS模型
将最优尺度变换引入MDS模型式对传统MDS模型的拓展,我们来看使用最优尺度变换的MDS模型再来分析一下饮料的数据
分析—度量—多维尺度(PROXSCAL)
四、多维展开模型
以上的MDS模型不管是传统MDS还是非度量MDS,都是要求各对象间不存在分组,分析时是直接考虑各对象两两间的距离远近。但是实际问题中,可能会遇到对象被分为两组,我们是想考察这多个组之间的相似性或差异性,而对组内对象间的距离远近并不关心,这时传统的MDS模型就不再适合,而需要采用多维展开模型进行分析。
看一个例子,现在收集了两组变量,一组是场景,共15个水平,另一组是行为,共15个水平。现在想分析这两组变量间的差异性或相似性,数据如下
我们用多维展开模型进行分析
分析—度量—多维展开(PREFSCAL)
接下来会分别输出行列变量的坐标,以及行列变量在二维分布图,但是我们实际上更关心的是行列变量的联合分布图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01