京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据将面临的重要课题:数据转化
大数据(Big Data)热潮是这几年产业界最夯的趋势话题,网路社群媒体的兴起,更推波助澜这股热潮,以为买了网路社群的大数据资料,就可以掌握消费者行为脉动,让行销活动无往不利,仿佛市场立即化作可取予求的宝山,这股数据掏金热让政府及许多企业趋之若鹜,纷纷投注资源于社群媒体的搜集与购买,幻想着抢先一步从中淘筛出最大的黄金。
但,大数据真的是这样吗?
将排山倒海的社群媒体资讯导入企业决策者们的电脑中,希望从琳琅满目真假难分的数据中,找出一条能带领 企业 脱离困境轻松获利的康庄大道;却发现原本想用来解决问题的大数据,创造了一个满是数字迷魂阵,一头栽进去很能找得到出口。
其实大数据的应用,着眼点并不在「大」量的数据,而是在「人」如何看待数据和让数据说话。
真正有用的数据不一定要花大钱从外部购买,毕竟买回来还要花大量的力气去阅读消化,还不如先从公司内部累积的精准数据和经验着手,看能不能重新找出正确的分析观点来解决问题。
先从小而准的数据开始
在进行数据分析时,数据准确度的重要性比数据量的大小重要,我们可以依数据性质分为三类:小而准(Small and accurate data)、大而乱(big and messy data)、开放数据(opendata)。
其中,小而准的数据如公司内部POS 交易数据,准确而清楚;大而乱的数据则像是从网路社群媒体抓下来的数据,还需要结构化统计整理出意义;开放数据像是天气、人口普查之类,则可以从政府机关的资料库提取。
在资料进行分析之前,我们都必须先思考我们面临的问题是什么?从问题中思考解决的方案,提出观点,再从资料分析中佐证。数据量越大,不确定性越高,所需要进行分析或排除的手续也相对较多,若我们能用小而准的数据进行分析比对,发现问题想出解决方法,一定会比从大而乱的资讯中找答案来得省时省力。
大数据时代 ,竞争的是解决问题与决策反应效率
一般大数据的特性, 大家耳熟能详的多半是四个V: 数量大(Volume)、速度快(Velocity)、多样性(Variety)、和不确定性(Veracity),但大数据存在的重要意义,也就是第五个V—价值(Value)却常常被人遗忘。
行销专家指出,前面四个V 都是在描绘大数据的样貌轮廓,第五个V 则是提醒,大数据需经过清算整理后,才能够为行销人或决策者带来贡献。所以大数据的使用重点,绝非资料量多大或资料取得管道多么特殊,而是资料创造多少价值。
用一般精准的小数据就能解决的问题,何须大费周章投入大量资源和成本相对较高的大数据?人们往往被大数据字面上的「大」所误导,以为数据量就是要大才会有效,殊不知关键是数据必须能够被衡量掌控,以小而准的数据为基础,视情况进行不同类型的数据之间相乘与重组,才是明智的大数据抉择。
能否用大数据的观念,将手边的数据迅速的转化成正确决策与行,比「快」还要比「准」,将是 大数据时代 接下来的重要课题。
大数据之后,厚数据(Thick Data)时代的来临…
「数字会说话」或许是大数据时代最常听到的口号,但美国当代统计预测鬼才奈特席佛(Nate Sliver)提醒我们:「数字没办法为自己说话,是我们在为它们说话,我们赋予它们意义。我们可能会用对自己有利的方式来解释资料,让资料脱离客观的现实。 」
大数据,不是单纯以数据多寡或来源来决胜负,而是要依靠「人」根据数据的结合与交叉比对形成的「判断」或「预测」准确与否来决胜。尤其在行销领域中,大数据大部分都是在处理与人有关的数据,而不是没有生命的物质。大数据行销背后代表的,是人的行为模式与需求,因此不能单纯只靠数字或统计来做判断的依据,必须更深入地思考品牌、商品和人之间的关系,而这样的思维将会是下一个厚数据(Thick Data)时代的开端。
所谓的厚数据与强调数据规模的大数据不同,厚数据更重视人和产品或产业数据间的深度与情境,好的数据观点,也往往是从厚数据产生,而非大数据。厚数据强调深入使用者情境,需要厚实的产业知识或经验为底,透过厚数据,将产业产品与消费者做更紧密的连结。
未来的大趋势,若只单纯从现有的大数据发现和判断,过度信任数字呈现结果,将很有可能造成误判。若能透过深入使用情境,探知自消费者需求影响而成的未来产业发展趋势,方能展现厚数据的重要价值。
大数据与厚数据的研究方向差异比较表:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15