京公网安备 11010802034615号
经营许可证编号:京B2-20210330
几乎每一刻我们都在为大数据作出“应有的贡献”
这是我们大多数人司空见惯的一天:早上起床后抓起手机看当天天气预报,然后是查询上班路线,再接下来打开汽车导航,上班后通过互联网查询资料,并不时用手机与外面联系,下班后通过手机APP订餐、购买电影或演出票,回家后通过互联网电视收看节目……“不论你喜欢与否,你的生活已经受控于技术”。在《大数据时代的隐私》一书的作者看来,几乎每一刻我们都在为大数据作出“应有的贡献”。当然,就是这样看似再寻常不过的日常生活,我们一天的行踪、偏好(哪怕有时仅仅只是一个闪念),早就暴露无遗,某种意义上,我们越来越像是一个没有私密可言的“透明人”。
技术就是这样一把双刃剑,既会给你带来诸多便利,同时也会在悄无声息中肆意“偷”走你的信息,根本不在乎你的情绪,这正是本书所要阐明的核心所在。书中每一章都展示了人们在家庭和工作中的日常活动如何成为大数据收集的一部分。或因第一作者本人有过白宫首席信息官的特殊经历,对大数据接触较多,对信息技术更为敏感,所以本书能够针对性提出个人避免隐私泄露的实操举措。此外,本书对改进公共监管举措、完善法律的思考亦不乏真知灼见。
上世纪九十年代,我们曾慨叹生活在一个信息爆炸的年代,今天我们则像是生活在一个数据爆炸甚至过剩的年代。资料表明,全球数据正在迅速增长,大约每18个月翻一番。有专家估计,到2020年全球将会有240亿台连接设备,其中一半是可移动的。届时,全球年数据产生量将会达到2009年的45倍。美国统计学家纳特·西尔弗也在《信号与噪声》一书中指出,在大数据时代,人类一天创造的内容甚至超过人类有史以来的所有内容。在本书作者看来,大数据越是这样蓬勃发展,对公众私密生活的威胁越可能“雪上加霜”。
大数据不仅改变了我们,还“战胜”了我们。2016年的“人机大战”无异于大数据对人类智商的一次不经意“嘲弄”:由谷歌公司研造的人工智能系统阿尔法围棋,挑战世界围棋冠军李世石,最终以4:1获胜。就此,中国科学院院士徐宗本一言以蔽之——人工智能的胜利其实就是大数据的胜利。素以智慧自居的人类败给了自己亲手创造的大数据,这是多么大的讽刺!
“悖论”远不止此,我们甚至还没有大数据更了解自己。举个许多人碰到但又不曾留意的例子。当你在互联网上偶尔点开一本书,你可能很快就会发现,你的电脑页面虽然与别人的大体相同,但你点过的那本书,或者与其关联的信息总会及时出现在页面一角。你原本没什么特别感觉,经这么反复刺激,你很可能在潜移默化中慢慢改变原来的看法,至而生成购买欲。还有,当我们打开APP,刚打出一个字,后面常常会联想出一串信息。这些信息绝非空穴来风,要么因为上了热搜榜,要么因为我们曾经浏览过,或者关注过关联的信息。
大数据蕴含无限商机。“数据挖掘的概念已经存在了至少20年”,“一项数据业务预测2020年企业持有的数据量将超过2012年收集量的30倍”。另一方面,近年来关于大数据泄露公众个人信息的案例屡见不鲜。如果数据的获取没有规则边界,那么就只剩下“裸奔”的利益。媒体多次披露,互联网上的个人信息贩卖已经形成黑色利益链。
内幕触目惊心。商业机构在“盗取”公众个人信息后,常常又以投其所好的方式出现在消费者面前。许多消费者只是觉得越来越方便,而很难意识到这种“贴心”服务是建立在自己信息被泄露基础之上。“我们需要越来越多的数据来满足无止境的欲望,然而我们还从未公开探讨哪些个人信息可以被收集以及如何被利用”。事实上,“信息收集和挖掘技术已经远远超出政府的能力范围,以致难以深思熟虑地通过一项兼顾商业和隐私保护的法律。正因如此,商业公司不知道它不可以做什么,而民众也没有得到保护”。
两位作者郑重指出,在大数据漫天飞舞的今天,只要我们使用手机、电脑、身份证、护照、社保卡、车载卫星定位等,个人信息就一定存在泄露风险。就此,本书从日常生活角度逐一提供技术防范举措。当然,这些举措未必一定确保个人信息的万无一失,但至少可以加上一道密级更高的锁,大大提升泄密的难度。
值得警醒的是,紧步商业机构后尘,一些国家的公共机构亦借大数据技术之利对公民信息“巧取豪夺”。《大数据时代》作者舍恩伯格曾称,“信任是大数据可持续发展的 货币 ”。这里的信任其实应加上引号,因为大多数数据的采集并没有经过被采集者的同意或者授权。2013年,美国中央情报局技术分析员斯诺登向英国《卫报》和美国《华盛顿邮报》泄露了美国国家安全局和联邦调查局启动的一个代号为“棱镜”的秘密监控项目,这也就是至今仍在发酵的“棱镜门”事件。根据斯诺登披露的文件,美国国家安全局可以接触到大量个人聊天日志、存储的数据、语音通信、文件传输、个人社交网络数据。
现实尚且如此,那是否意味,在可预见的未来,随着可穿戴技术和眼球捕捉技术等高科技的突飞猛进,届时无所不在的数据采集会否更令公众束手无策呢?有一点或无疑问,相较而言,今天的数据采集还显得粗放原始。这也就是说,虽然困难很大,从现在开始改进保护个人信息法律,这远比坐等日后数据采集更加泛滥时再纠偏更为容易。想必这也是本书两位作者的良苦用心所在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22