京公网安备 11010802034615号
经营许可证编号:京B2-20210330
今天,数据比以往任何时候都更加根植于我们生活中的每个角落。我们试图用数据去解决问题、改善福利,并且促成新的经济繁荣。伴随着数据处理能力的提 升、运算与储存成本的井喷及越来越多的设备中嵌入各种传感技术,数据的收集、储存与分析正处于一个近乎无限上升的趋势。2011年,有人估算全世界的人们 一年创造与复制的信息量超过了1.8泽字节,而到2013年,这个数字上升到了4泽字节。
每一天,全世界会上传超过5亿张图片,每分钟就有20小时时长的视频被分享。然而,即使是人们每天创造的全部信息——包括语音通话、电子邮件和信息在内的各种通信,以及上传的全部图片、视频与音乐,其信息量也无法匹及每一天所创造出的关于人们自身的数字信息量。
这样的趋势会持续下去。我们现在还处于所谓“物联网”的最初级阶段,而随着技术成熟,我们的设备、交通工具和迅速发展的“可穿戴”科技将能互相 连接与沟通。科技的进步已经使创造、捕捉和管理信息的成本降至2005年的六分之一,而从2005年起,用在硬件、软件、人才及服务之上的商业投资也增长 了整整50%,达到了4000亿美元。
大数据的定义有很多,对于计算机科学家、金融分析师亦或是力图争取风险投资的企业家,这个定义都不尽相同。大多数的定义反映出了一种捕获、总和 与分析更大规模、更高速、更多样的数据的技术能力。换句话说,“现在人们可以更快地获取数据,数据涵盖更广阔的领域,衡量数据的数量级也是过去所达不到 的。”更准确地说,大数据集就是“产生于设备、传感器、网络交易、电子邮件、视频、点击流等当今与未来各种可能的数码资源,更大、更多样、更复杂、更长纵 深的分散性数据集。”
不论我们如何定义大数据这种科技现象,大数据分析所具有的无限潜力都对我们的法律、伦理及社会规范发起了挑战,考验我们能否在大数据的世界中保 护隐私和其他价值观。前所未有的运算能力带给了我们不可思议的发现、创新,并推动着我们生活质量的进步。然而,大多数普通消费者却难以看到这种力量,所以 这也造成了掌握数据的人与有意无意间提供数据的人之间权力的不对等。所以,比“大数据是什么”更加重要的是,“大数据能做到什么“,以及个人与数据收集者 之间的关系。
那么,大数据的精彩之处究竟是什么?下文将界定什么是大数据真正创新、真正不同的东西。要研究大数据,我们需关注那些数量之庞大、种类之繁多、 传输速度之快使传统数据捕捉分析方式无法胜任的数据,这样的特征被约定俗称为“三个V”(规模Volume,种类Varity,速度Velocity)。 不断降低的收集、储存、处理数据成本,以及越来越多的新数据源如传感器、相机、定位装置等观察性设备的出现,使得我们如今身处于一个数据采集无处不在的世 界。数据的收集和处理量是前所未有的。可联网设备、可穿戴科技和高级传感器监测着从生命迹象到能量使用再到慢跑者步速的一切,这样的数据爆炸对运算能力提 出了更高的要求,也将会推动更复杂数据管理技术的发展。
数据不仅仅是更多了,它的来源也更加广泛,形式也更加多元。一些数据是“数码原生”的,就是说它本身就是由计算机或数据处理系统创造出来的数码 信息,比如电子邮件、网页浏览和GPS位置数据。另一些数据是“虚拟原生“的,也就是说它来自实体世界,但被人为转换成数码形式,比如手机、相机和录像机 等拍摄的音视频,或者可穿戴设备监测下的心率、排汗等物理活动数据。随着数据融合能力的增强,越来越多本不相干的数据被综合到一起,大数据将会带给人们非 同寻常的洞察力。
此外,数据收集与分析的速度正在逐渐趋于实时,这就意味着数据分析可以对人所处的环境产生即时的影响,甚至左右人们的选择。高速数据的典型实例 是记录用户与网页交互活动的点击流数据、移动设备上的GPS实时定位数据,及各种社交媒体上的用户分享。客户和公司都有更大的实时分析、实时受益的需求。 当然了,一个手机地图应用如果不能实时、准确地定位,显然就失去了它的意义;车载系统的实时运算也是保障我们行车安全的关键。
如果应用得当,大数据分析能提高经济效率、改进消费习惯、完善政府服务,甚至挽救人的生命。比如:
一、大数据与“物联网”的发展具有融合工业经济与信息经济的潜力。如今,我们可以在飞机引擎和货运汽车上装备传感器,监测各种数据,并在需要维修的时候发出自动警报。不仅可以降低维修成本,更能增强安全性。
二、医疗保险和医疗补助中心已经开始使用预测分析软件标记潜在的医保诈骗行为,防骗保系统帮助实时识别高危人群,已成功防止了涉及一亿一千五百万美元的诈骗性支取,在应用此技术的第一年,每1美元的投入就获得了3美元的收益。
三、一项大数据研究汇总了来自新生儿重症监护室的数百万数据样本,用以判断哪些新生儿更容易接受致命的感染。通过分析这些数据,这套系统不用等 值班医生注意,就能辨认出诸多感染发生的早期征兆,例如体温升高、心率加速等等。在传统实践中,有些早期征兆是经验丰富的医师也难以注意到的。
大数据技术还在其他很多领域拥有不可限量的前景,如按需管理电网、改善能源效率、增加发展中国国家农产量,防止传染病传播等等。
新机遇也带来了新挑战。大数据科技从庞大的数据集中获取价值,赋予了研究者以往无法想象的洞察力。当然,大数据的技术力量如此广泛与深远,我们 也需要关注它对社会伦理造成的挑战。历史学家克朗兹伯格(Melvin Kranzberg)在他的《科技第一法则》中写道:“科技本身非善非恶,但它也不是中立的。”我们应该时刻记住,科技既可以为公众谋福利,也可能对人造 成伤害。关键就是,如何在机遇与挑战间寻找到最佳的平衡。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21