京公网安备 11010802034615号
经营许可证编号:京B2-20210330
认清大数据四大误区:大数据终将消除经济自由是最大谬误
在互联网时代,大数据已充斥了我们生活和工作的方方面面。有了大数据,人们对于经济社会的认识与把握进入到一个全新的时代,即进入到一个较信息经济更高位阶的新阶段,也就是“数字经济”。数字经济时代,似乎“谁”“掌握”了大数据,就能够对经济活动乃至经济社会做到“全知”,进而能够“预知”经济社会的未来,甚或能够“全能性”地主宰经济社会,但其实这些都是关于“大数据”的认识误区。
误区一:大数据终将主宰经济社会,消除个体差异,成就一元化的经济体系。
网络经济时代,人们在经济社会中的诸种活动通过网络账户体系来实现,这些活动也就是所谓的网络账户活动,其基本内容更多地体现为账户间的关系。这些账户活动及其账户关系是由数字网络程序所设定的、驱动的,且被实时地记录下来。这就形成了所谓的“大数据”。因此,大数据来源于大量的网络账户的活动及其有效的记录,简言之,大数据是网络账户数据。
有人认为,大数据意味着“全知”,进而“全知”意味着“全能”,发展开去,大数据终将主宰经济社会,消除个体差异,成就一元化的经济体系。这是关乎大数据最大的谬误。
“大数据”是“经济自由”所投射下的数字影像,它无法反噬掉“经济自由”,成为经济社会的主宰。经济社会中的大数据,是经济活动的网络化、账户化、数字化的产物,是经济人自由意志的集合映射。换言之,没有高度的经济自由,没有充分而多样化的经济选择,就无所谓“大数据”。
大数据就是社会经济活动的一层“数据化的外衣”而已,不管它多么服帖、合体或随心,活动着的是里面的“身体”,且这个“身体活动”是自由意志所决定的。如果认为掌握了大数据就能影响乃至决定人们的经济决策,将自身的意志贯彻到别人的头上去,这就是本末倒置了。
误区二:大数据是全量数据,能够预知未来。
“大数据”并不能“全能性”地预设未来,但是能否“先知”般地预知未来?同样,做不到。因为,大数据在时间上是有约束条件的。依凭历史数据,能够预知未来吗?
大数据是全量数据,源于事实,也是事实,它并非既有经济理论变量性的函数分析,并不能在时间轴上理所应当地延展开去。在时间轴上,大数据终归是局部的,远非全量,它是实然的,是已发生的,即其性质上仍然是历史数据而已。
大数据本身不是先知,也没有谁能通过大数据成为先知。基于大数据并不能建构所谓的“历史规律”,更谈不上把同大数据有所谓“关系”的某人或某类人嵌入到这一所谓的历史规律中去,进而使其发挥主观能动性,担纲某种角色。历史数据对于未来有一定的作用,但是根本上讲,历史数据并不能决定未来。没人能够凭依大数据而可预知未来,成为先知。
误区三:大数据包揽一切信息。
数据的标准化与格式化,决定了大数据不是“全息”的。
全知是指在一定标准或口径下的全量数据,但并不意味着包揽所有信息。信息的完整性是一个抽象而复杂的问题。数据信息往往是静态的,是在一定时间点下的结论,其被有效地获取甚或表达出来,就意味着一部分信息是确定的、静态的,而另一部分则是不确定、动态的。这就好像猫的眼睛一样,当你用相机去拍摄它时,它便发生变化,也就是必然丢失掉或隐去一部分信息。所以,全知是就对象自身而言的,并非是与对象有关的全部信息而言的。
现实中,人们对于大数据的感受确是非常丰满有力、醒目而刺激的,这种情况一时间使人们感性上误以为这就是全息的。事实上,这种情形以往也反复出现过,有如第一次听到电话听筒里传来另一端亲友的话语,便以为那是真声音。
误区四:把“大数据”当作“小数据”用,分析采用部分局部数据。
经济社会中,如果取得的数据样本有限,就需要确立有效的分析框架,建立模型,确立函数关系,做回归分析。然而,如果样本不仅是充分的,而且是完整的,是全量的,那么数据分析就要摆脱既有的旧模式了。从全样本的大数据中,收窄样本数量,只选取部分样本用来分析,是一种缩量的方法,缩量样本分析后的结论又要适用于总量,这就是对大数据的“小用”。
举例来说,如果能够获得一个城镇全部机动车以及全部外埠入城车辆的运行状况,我们就可依所设议题来直接抓取数据,获得结论。抽样建模分析及其回归分析,就不仅累赘,而且极有可能铸成大错。简单来说,大数据,就是扳手指头数不过来的状况,交给机器与程序去“扳”,不仅数得过来,而且数出来了。大数据往往更多地可以直接抓取并使用,而非在数理化、模型化、函数化等“加工”后再使用。
大数据具有完整性和全局性的特质,如果采用部分局部数据,然后试图得出超出部分局部数据范围的结论,这种既有的思维惯性,并不适用于大数据的逻辑和现实。大数据不能当作小数据用,小数据终归拼不出完整的大数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24