
实实在在大数据
在人类历史长河中,即使是现代社会日新月异的发展中,人们还主要是依赖抽样数据,局部数据,片面数据,甚至是在无法获得实证数据的时候纯粹依赖经验,理论,假设和价值观去发现未知领域的规律。所以,人们对世界的认识往往是表面的,肤浅的,简单的,扭曲的或者是无知的。舍恩伯格指出,大数据时代的来临使人类第一次有机会和条件在非常多的领域和非常深入的层次获得和使用全面数据,完整数据和系统数据,深入探索现实世界的规律,获取过去不可能获取的知识,得到过去无法企及的商机。
由于大数据的出现,使得通过数据分析获得知识,商机和社会服务能力从以往局限于少数象牙塔之中的学术精英圈子扩大到普通的机构,企业和政府部门。门槛的降低直接导致了数据的容错率提高,成本的降低,但正如舍恩伯格所强调的,最重要的是人们可以从对于因果关系的追求中在很大程度上解脱出来,转而将注意力放在相关关系的发现和使用上。只要发现两个现象之间存在显著相关性就可以创造巨大的经济或社会效益,而弄清二者为什么相关可以留待学者们慢慢研究。大数据之所以可能成为一个“时代”,在很大程度上是因为这是一个可以由社会各界广泛参与,八面出击,处处结果的社会运动,而不仅仅是少数专家学者的研究对象。
大数据将逐渐成为现代社会的基础设施的一部分,和公路,铁路,港口,水电,通讯网络一样不可或缺。但就其价值特性而言,大数据却和这些物理化的基础设施不同,不会因为人们的使用而折旧和贬值。例如,一组DNA可能会死亡或毁灭,但数据化的DNA却永存。所以,舍恩伯格赞同许多物理学家的看法,世界的本质就是数据。因此,大数据时代的经济学,政治学,社会学和许多科学门类会发生巨大的甚至是本质上的变化和发展,进而影响人类的价值体系,知识体系和生活方式。哲学史上争论不休的世界可知论和不可知论将会转变为实证科学中的具体问题。可知性是绝对的,无事无物不可知;不可知性是相对的,是尚未知道的意思。
对于不是网络业,IT业和从事数据分析和使用的读者,本书的一大好处是通俗易懂,通过具体实例说明问题,有助于人们的理解和联想。在时限上,作者概括了直到2012年7月大数据方向上的最新发展,避免了许多同类作品中存在的例证过于陈旧,视野相对狭窄的毛病。
作为一位生活在欧美现代社会中的学者,舍恩伯格是把民主,开放和理性作为已知前提讨论大数据革命的。这对生活在发展中国家,社会现代化程度有限的读者来说,也许是个遗憾,因为书中描述的许多已经发生的事例可能更像是神话。没有市场经济制度和法治体系作为基础支撑,大数据很可能成为发达国家在下一轮全球化竞争中的利器,而发展中国家依然处于被动依附的状态之中。整个世界可能被割裂为大数据时代,小数据时代和无数据时代。
处于发展中国家前列的中国,目前正面临着一个重大的历史抉择关口。应该说,在过去三十余年的时间里,中国在快速走向工业化,信息化,网络化方面交出了一份不错的成绩单。适逢世界走向数据化,迈入大数据时代的时刻,无论对个人,企业,还是对社会和国家,都有认真理解,严肃决策的必要性和紧迫性。哪怕仅从这一点考虑,读读这本书是很值得的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12