
python杀死一个线程的方法
由于python线程没有提供abort方法,所以我们需要自己想办法解决此问题,面对这一问题,小编帮大家解决phthon杀死一个线程的方法
最近在项目中遇到这一需求:
我需要一个函数工作,比如远程连接一个端口,远程读取文件等,但是我给的时间有限,比如,4秒钟如果你还没有读取完成或者连接成功,我就不等了,很可能对方已经宕机或者拒绝了。这样可以批量做一些事情而不需要一直等,浪费时间。
结合我的需求,我想到这种办法:
1、在主进程执行,调用一个进程执行函数,然后主进程sleep,等时间到了,就kill 执行函数的进程。
测试一个例子:
import time
import threading
def p(i):
print i
class task(threading.Thread):
def __init__(self,fun,i):
threading.Thread.__init__(self)
self.fun = fun
self.i = i
self.thread_stop = False
def run(self):
while not self.thread_stop:
self.fun(self.i)
def stop(self):
self.thread_stop = True
def test():
thread1 = task(p,2)
thread1.start()
time.sleep(4)
thread1.stop()
return
if __name__ == '__main__':
test()
经过测试只定了4秒钟。
经过我的一番折腾,想到了join函数,这个函数式用来等待一个线程结束的,如果这个函数没有结束的话,那么,就会阻塞当前运行的程序。关键是,这个参数有一个可选参数:join([timeout]): 阻塞当前上下文环境的线程,直到调用此方法的线程终止或到达指定的timeout(可选参数)。
不多说了贴下面代码大家看下:
#!/usr/bin/env python
#-*-coding:utf-8-*-
'''''
author:cogbee
time:2014-6-13
function:readme
'''
import pdb
import time
import threading
import os
#pdb.set_trace()
class task(threading.Thread):
def __init__(self,ip):
threading.Thread.__init__(self)
self.ip = ip
self.thread_stop = False
def run(self):
while not self.thread_stop:
#//添加你要做的事情,如果成功了就设置一下self.thread_stop变量。
[python] view plaincopy在CODE上查看代码片派生到我的代码片
if file != '':
self.thread_stop = True
def stop(self):
self.thread_stop = True
def test(eachline):
global file
list = []
for ip in eachline:
thread1 = task(ip)
thread1.start()
thread1.join(3)
if thread1.isAlive():
thread1.stop()
continue
#将可以读取的都存起来
if file != '':
list.append(ip)
print list
if __name__ == '__main__':
eachline = ['1.1.1.1','222.73.5.54']
test(eachline)
下面给大家分享我写的一段杀死线程的代码。
由于python线程没有提供abort方法,分享下面一段代码杀死线程:
import threading
import inspect
import ctypes
def _async_raise(tid, exctype):
"""raises the exception, performs cleanup if needed"""
if not inspect.isclass(exctype):
raise TypeError("Only types can be raised (not instances)")
res = ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, ctypes.py_object(exctype))
if res == 0:
raise ValueError("invalid thread id")
elif res != 1:
# """if it returns a number greater than one, you're in trouble,
# and you should call it again with exc=NULL to revert the effect"""
ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, 0)
raise SystemError("PyThreadState_SetAsyncExc failed")
class Thread(threading.Thread):
def _get_my_tid(self):
"""determines this (self's) thread id"""
if not self.isAlive():
raise threading.ThreadError("the thread is not active")
# do we have it cached?
if hasattr(self, "_thread_id"):
return self._thread_id
# no, look for it in the _active dict
for tid, tobj in threading._active.items():
if tobj is self:
self._thread_id = tid
return tid
raise AssertionError("could not determine the thread's id")
def raise_exc(self, exctype):
"""raises the given exception type in the context of this thread"""
_async_raise(self._get_my_tid(), exctype)
def terminate(self):
"""raises SystemExit in the context of the given thread, which should
cause the thread to exit silently (unless caught)"""
self.raise_exc(SystemExit)
使用例子:
>>> import time
>>> from thread2 import Thread
>>>
>>> def f():
... try:
... while True:
... time.sleep(0.1)
... finally:
... print "outta here"
...
>>> t = Thread(target = f)
>>> t.start()
>>> t.isAlive()
True
>>> t.terminate()
>>> t.join()
outta here
>>> t.isAlive()
False
试了一下,很不错,只是在要kill的线程中如果有time.sleep()时,好像工作不正常,没有找出真正的原因是什么。已经是很强大了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04