
当大数据还未真正落地 企业信息化遇到哪些挑战
2017CIO生态实践报告显示,在下一阶段的新技术应用方向上,对于大数据应用,40%的企业表示热情较高,11.5%的CIO表示非常高;对物联网的应用,39.2%的企业表示倾向性较高,9.2%的企业表示非常高;对B2B电子服务,39.2%的企业表示较高的热情。
应用场景缺乏,技术门槛高,大数据无法落地
大数据应用仍处在非常初级的阶段,就目前来看,在大数据应用的五个主要核心环节中,从数据的获取、预处理、数据存储、数据分析到数据可视化,企业CIO目前对大数据的应用主要集中在数据的预处理和存储这两个环节,占比高达63%。
63.5%的企业CIO表示将利用大数据提高企业决策速度,57.3%的企业表示将会利用大数据服务提高生产作业的安全性,这说明CIO们对于利用大数据实现何种服务已经有较为明确的规划。
从大数据的应用场景上看,50%(经过验证)的企业已经将大数据服务应用于市场营销端的数字传播和舆情监测,45.7%的企业已经将大数据服务引入质量控制端的良品率提升和合理设计,33.7%的企业已经在大数据引入战略决策管理端的管理控制和经营决策。
当然,目前阻挠大数据成功落地的因素有很多,51.1%的企业表示,大数据技术难度高阻碍了大数据进一步的应用和尝试,42.4%的企业对数据相关人才的匮乏表示无可奈何。
能源技术滞后,物联网生不逢时
在物联网实践过程中,技术是第一实践路径。数据显示,55.1%的CIO关注无线通信技术,53.9%的CIO关注无线传感网络,47.2%的CIO关注网络与移动网络。
CIO也会遭遇物联网实践中的困难和挑战,52.8%的CIO认为能源技术滞后,47.2%的CIO认为安全解决方案缺失,而33.7%的CIO认为感知技术的缺失与阻挠了企业物联网项目的成功实践。
未来,56.3%的CIO将基于智能互联产品创新企业服务模式,支持企业转型。
B2B逐步更迭,SaaS化、智能化成为关键词
调研数据显示,67.8%的CIO认为B2B优化了供应链管理,控制了生产成本。59.8%的CIO认为B2B打破了地域限制,提高了企业销售能力。
在B2B实践方面,69%的CIO选择第三方电子平台开设旗舰店,56.3%的CIO则选择第三方垂直电商平台,与公司上游或下游伙伴形成供销关系。从根本上讲,企业一般选择成熟的第三方电商平台作为切入点,一是增加企业的IT渠道,二是增加B2B服务的经验,本质上还是B2C的方式,在获客方面的效果更加突出。
在B2B应用方面,49.4%的CIO选择信息抓取工具,40.2%的CIO选择进存销软件,还有40.2%的被调研者选择即时通讯软件。
未来,B2B电子商务平台将迎来六个变化:一是传统巨头电商化,二是从信息平台转为链接平台,三是从商业智能到人工智能进化,四是地方特色产业链集群出现,五是逐渐做到产业纵深的All-in-one,六是B2B的SaaS化。
除此之外,社交网络、VR、Fintech、AI、认知学习等新技术的崛起和商业化道路的不断尝试,不仅在当下可间接为企业增产提效,还有望在未来掀起第四次工业革命。当然,越是便捷的新技术服务,支撑其运行的应用架构也分散、复杂。无论是部署在IDC机房的服务器、存储和网络设备,还是前端的应用程序,都离不开IT团队的共同努力,而CIO在扮演决策者形象的同时,在应对新技术学习和实施方面的能力就显得尤为首要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03