京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当大数据还未真正落地 企业信息化遇到哪些挑战
2017CIO生态实践报告显示,在下一阶段的新技术应用方向上,对于大数据应用,40%的企业表示热情较高,11.5%的CIO表示非常高;对物联网的应用,39.2%的企业表示倾向性较高,9.2%的企业表示非常高;对B2B电子服务,39.2%的企业表示较高的热情。
应用场景缺乏,技术门槛高,大数据无法落地
大数据应用仍处在非常初级的阶段,就目前来看,在大数据应用的五个主要核心环节中,从数据的获取、预处理、数据存储、数据分析到数据可视化,企业CIO目前对大数据的应用主要集中在数据的预处理和存储这两个环节,占比高达63%。
63.5%的企业CIO表示将利用大数据提高企业决策速度,57.3%的企业表示将会利用大数据服务提高生产作业的安全性,这说明CIO们对于利用大数据实现何种服务已经有较为明确的规划。
从大数据的应用场景上看,50%(经过验证)的企业已经将大数据服务应用于市场营销端的数字传播和舆情监测,45.7%的企业已经将大数据服务引入质量控制端的良品率提升和合理设计,33.7%的企业已经在大数据引入战略决策管理端的管理控制和经营决策。
当然,目前阻挠大数据成功落地的因素有很多,51.1%的企业表示,大数据技术难度高阻碍了大数据进一步的应用和尝试,42.4%的企业对数据相关人才的匮乏表示无可奈何。
能源技术滞后,物联网生不逢时
在物联网实践过程中,技术是第一实践路径。数据显示,55.1%的CIO关注无线通信技术,53.9%的CIO关注无线传感网络,47.2%的CIO关注网络与移动网络。
CIO也会遭遇物联网实践中的困难和挑战,52.8%的CIO认为能源技术滞后,47.2%的CIO认为安全解决方案缺失,而33.7%的CIO认为感知技术的缺失与阻挠了企业物联网项目的成功实践。
未来,56.3%的CIO将基于智能互联产品创新企业服务模式,支持企业转型。
B2B逐步更迭,SaaS化、智能化成为关键词
调研数据显示,67.8%的CIO认为B2B优化了供应链管理,控制了生产成本。59.8%的CIO认为B2B打破了地域限制,提高了企业销售能力。
在B2B实践方面,69%的CIO选择第三方电子平台开设旗舰店,56.3%的CIO则选择第三方垂直电商平台,与公司上游或下游伙伴形成供销关系。从根本上讲,企业一般选择成熟的第三方电商平台作为切入点,一是增加企业的IT渠道,二是增加B2B服务的经验,本质上还是B2C的方式,在获客方面的效果更加突出。
在B2B应用方面,49.4%的CIO选择信息抓取工具,40.2%的CIO选择进存销软件,还有40.2%的被调研者选择即时通讯软件。
未来,B2B电子商务平台将迎来六个变化:一是传统巨头电商化,二是从信息平台转为链接平台,三是从商业智能到人工智能进化,四是地方特色产业链集群出现,五是逐渐做到产业纵深的All-in-one,六是B2B的SaaS化。
除此之外,社交网络、VR、Fintech、AI、认知学习等新技术的崛起和商业化道路的不断尝试,不仅在当下可间接为企业增产提效,还有望在未来掀起第四次工业革命。当然,越是便捷的新技术服务,支撑其运行的应用架构也分散、复杂。无论是部署在IDC机房的服务器、存储和网络设备,还是前端的应用程序,都离不开IT团队的共同努力,而CIO在扮演决策者形象的同时,在应对新技术学习和实施方面的能力就显得尤为首要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27