京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据好就业吗?当大数据遇上找工作怎么办
这是一个“大数据”的时代,是人力资源信息“大爆炸”的时代,也是人力资源管理大变革的时代。科多大数据就业老师指出,在大环境的变化下,企业人力资源管理的思维也要发生变革。
长期以来,企业多数招聘、人员晋升和激励都是基于主管感觉、个人经验和企业价值观体系。随着人力资源管理的成熟,多数企业人力资源管理已从单凭经验的模式逐步向依靠事实数据的模式转型。数据对于企业的HR来讲并不陌生,从最开始通过招聘搜集员工信息,到能力测评,以及年度、季度的绩效考评,日积月累的数据不可谓不大,但是真正将这些数据整理分析,提供给人才管理者做决策的企业却并不多见。这时,新的问题又出现了,我们如何充分利用这些数据以便更有效地支持人力资源管理工作?
大数据时代到来,给人力资源管理带来了海量数据,比如人力成本数据、劳动薪酬数据、绩效管理数据,员工需求分析等。在人力资源管理中,搭建大数据信息化平台,让管理者从繁杂数据中走出来,借助信息化平台快速精准地处理这些数据,像学力银行平台,就是帮助人力资源管理者把关键数据提炼出来,进行定量分析,提升管理效率与水平,使得HR管理更加科学化。
与统计学家在过去所做不同,只做抽样分析或样本数据处理,如今,数据已不是过去少量数据了。大数据时代不同,标志着社会处理信息方式变化,大数据时代可能会改变人们思考世界的方式。例如过去做招聘,是通过招聘会、51job、智联等渠道进行,现在招聘观念也在逐渐转变,更多地利用微信、微博、QQ群社交工具进行招聘,最有效地模式还是借助学力银行平台,不仅仅是查阅求职者的简历,还可以对求职者进行综合专业测评、查阅学力报告,了解求职者的性格、发展目标、学习能力、职业背景,更加精准地找到适合本企业的人才。
“大数据”的出现颠覆了人类的思维惯性,“大数据”模式的关注重点是“是什么”而不是“为什么”,它强调的是相关性,而我们一直关注的因果关系,在这里被放到了次要位置。我们在海量数据中寻找的是结果与变量之间的相关关系,如:具备哪些特点的人适合管理工作?而不是为什么这些人适合管理工作,这些特点也不再局限于性格类型,为人处世等我们经常在考核访谈中谈到的特征,大数据的存在使我们能够对其网络言论,论坛分享,兴趣爱好等特征进行统计分析。所以,“大数据”时代下的人力资源工作者不仅需要拨云见日的信息甄别能力,还需要具备对人力资源管理工作的高敏感性以及创新能力。
“大数据”技术目前还并没有深入的走进人力资源领域,由于其较高的技术设备要求以及我国企业管理工作的特点的原因,可能这项技术大规模应用到我国人力资源领域还需要很长的时间,但这项技术变革的规模目前已愈演愈烈,已逐步在各行业中扩散,作为人力资源工作者的我们也很有必要提前进行知识储备,认识它,了解它,玩好它,这样,在变革蔓延到人力资源领域时,我们才能从容面对,走在行业的前沿,占领战略制高点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10