
大数据好就业吗?当大数据遇上找工作怎么办
这是一个“大数据”的时代,是人力资源信息“大爆炸”的时代,也是人力资源管理大变革的时代。科多大数据就业老师指出,在大环境的变化下,企业人力资源管理的思维也要发生变革。
长期以来,企业多数招聘、人员晋升和激励都是基于主管感觉、个人经验和企业价值观体系。随着人力资源管理的成熟,多数企业人力资源管理已从单凭经验的模式逐步向依靠事实数据的模式转型。数据对于企业的HR来讲并不陌生,从最开始通过招聘搜集员工信息,到能力测评,以及年度、季度的绩效考评,日积月累的数据不可谓不大,但是真正将这些数据整理分析,提供给人才管理者做决策的企业却并不多见。这时,新的问题又出现了,我们如何充分利用这些数据以便更有效地支持人力资源管理工作?
大数据时代到来,给人力资源管理带来了海量数据,比如人力成本数据、劳动薪酬数据、绩效管理数据,员工需求分析等。在人力资源管理中,搭建大数据信息化平台,让管理者从繁杂数据中走出来,借助信息化平台快速精准地处理这些数据,像学力银行平台,就是帮助人力资源管理者把关键数据提炼出来,进行定量分析,提升管理效率与水平,使得HR管理更加科学化。
与统计学家在过去所做不同,只做抽样分析或样本数据处理,如今,数据已不是过去少量数据了。大数据时代不同,标志着社会处理信息方式变化,大数据时代可能会改变人们思考世界的方式。例如过去做招聘,是通过招聘会、51job、智联等渠道进行,现在招聘观念也在逐渐转变,更多地利用微信、微博、QQ群社交工具进行招聘,最有效地模式还是借助学力银行平台,不仅仅是查阅求职者的简历,还可以对求职者进行综合专业测评、查阅学力报告,了解求职者的性格、发展目标、学习能力、职业背景,更加精准地找到适合本企业的人才。
“大数据”的出现颠覆了人类的思维惯性,“大数据”模式的关注重点是“是什么”而不是“为什么”,它强调的是相关性,而我们一直关注的因果关系,在这里被放到了次要位置。我们在海量数据中寻找的是结果与变量之间的相关关系,如:具备哪些特点的人适合管理工作?而不是为什么这些人适合管理工作,这些特点也不再局限于性格类型,为人处世等我们经常在考核访谈中谈到的特征,大数据的存在使我们能够对其网络言论,论坛分享,兴趣爱好等特征进行统计分析。所以,“大数据”时代下的人力资源工作者不仅需要拨云见日的信息甄别能力,还需要具备对人力资源管理工作的高敏感性以及创新能力。
“大数据”技术目前还并没有深入的走进人力资源领域,由于其较高的技术设备要求以及我国企业管理工作的特点的原因,可能这项技术大规模应用到我国人力资源领域还需要很长的时间,但这项技术变革的规模目前已愈演愈烈,已逐步在各行业中扩散,作为人力资源工作者的我们也很有必要提前进行知识储备,认识它,了解它,玩好它,这样,在变革蔓延到人力资源领域时,我们才能从容面对,走在行业的前沿,占领战略制高点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23