
企业大数据应用的拓展之路
大数据的应用模式
企业日常经营中,与数据相关的工作可划分为3个层次,分别是:数据、产品、商业。与之相对应,对大数据的应用模式分别为数据分析、数据模型、数据业务。
1.数据层面。主要围绕数据本身开展“数据分析”的工作,对各类数据的统计分析是主要形式。企业日常经营活动中会产生各种各样的数据,通过使用数据库软件、编写脚本和程序、利用各种数据挖掘软件可以从数据中得到各种基本统计信息,例如业务量、客户增长率、财务指标情况、风险指标变化,等等。“数据分析”工作具有明确的目标指向性,工作过程相对明确,工作效果易显现。
2.产品层面。当数据和产品之间建立起紧密的联系,基于数据而研发的大量“数据模型”就成为各类产品的重要组成部分,从“数据模型”中发现的规律成为产品运营和优化的重要依据。例如,在面向C端用户的产品中,可以通过分析用户的历史行为特征数据形成用户画像模型,据此提供个性化推荐功能,还可以通过分析海量用户在使用产品时过程路径的特点形成用户操作模型,据此优化产品的业务流程设计;在面向B端用户的产品中,可以通过分析其历史经营数据、进行同业数据横向比较等多种方式,形成经营特征模型,提供丰富的经营决策支持功能。“数据模型”正日益成为各类产品不可或缺的一部分,借助“数据模型”,数据对产品在功能设计、运营全流程的支持作用日益凸显。
3.商业层面。数据不再是其它工作的辅助、不再是配角,以数据价值挖掘和利用为核心的“数据业务”成为业务发展的重要支撑。“数据业务”能为业务发展开拓新的方向,是业务转型和创新发展的重要抓手。虽然这3个层次的工作没有必然的先后顺序,但一般的企业都从“数据分析”入手,逐步向“数据模型”演进,并期待开启“数据业务”。“数据分析”中积累的经验能为“数据模型”的研发提供很好的基础,“数据模型”中获得的认知与洞察是“数据业务”顺利开展的重要逻辑支撑。不同层面的数据工作各有其用武之地,都能体现各自的价值,为特定工作带来帮助。
推动大数据应用的关键举措
为能够顺利推动大数据应用成功,当前需要从机制保障、技术支撑、数据治理、应用设计、合作联动等方面发力。
1.机制保障。对很多企业来说,当前正处于大数据应用发展的战略机遇期。需要企业在从组织、财力和人力等方面给予大数据工作相应的保障,对大数据项目采取相对灵活的财务预算及收益计算政策,通过引进高水平人才、进行系统化培训、激励政策倾斜等措施,打造出高水平、多层次的数据人才队伍,等等。
2.技术支撑。要想大数据应用取得成功,建立以统一的大数据平台为核心的技术支撑体系必不可少。大数据平台应具备海量的数据存储能力、快速的分析挖掘能力、高效的数据访问能力以及丰富的可视化展现能力等基础能力,形成面向数据内容、服务、产品的立体架构,满足企业内外部各类数据服务需求。在大数据平台的建设过程中,应注意做好传统技术与新兴技术的适当运用、大数据平台与其它应用系统的高效互通、统一处理与分散应用的合理布局、长远规划与眼前需求的综合考量等工作。
3.数据治理。完善的数据治理可以确保数据的可用性、完整性及一致性,是大数据平台良性运转、数据得到合理管理、数据价值得以充分利用的必要条件。数据治理是企业大数据战略实施的重要基础,只有在企业内部建立一套行之有效的数据治理体系,企业才会真正进入商业智能的大数据时代。数据治理是一项长期、艰苦的重要工作,需要得到从上到下的高度重视和自始至终的一贯执行,才能确保企业大数据战略的长期有效执行。
4.应用设计。大数据的价值最终需要通过大数据的各类应用模式来体现。在“数据分析”层面,应充分挖掘大数据对智能运营、精准营销、客户服务、风险管控等各方面工作的支撑作用,提高工作效率,优化工作模式。在“数据模型”层面,一方面,需要为各类产品设计丰富的大数据元素,提供相应的数据支持,丰富产品功能,优化用户体验,增强用户粘性;另一方面,也需要在各类产品设计中贯彻大数据思维,将收集各类数据、获取用户授权、记录行为模式、产品自身评估和优化等工作渗透到产品设计、研发和运营的各个环节,为大数据长期发展提供坚实的数据基础。在“数据业务”层面,需要充分利用好内外部各类数据,规划、设计和研发以大数据服务为核心的创新产品,丰富产品体系,形成新的业务收入来源。
5.合作联动。企业的大数据应用想要取得更大的成功,良好的外部合作与联动也是重要的途径。在数据内容的丰富、数据处理技术和价值挖掘的经验借鉴、数据应用的推广、数据工作影响力的拓展等诸多方面,合适的外部合作伙伴往往能提供很好的帮助,起到事半功倍的效果。除此之外,企业在大数据应用开拓方面,选择专业的数据服务商也至关重要。中科点击作为行业大数据应用专家,凭借多年大数据应用实战经验,形成了一套标准化的产品开发模式,已经为汽车、金融、教育、电商、医美等众多行业提供了定制化的大数据服务。
当前,我们正在进入一个崭新的大数据时代。各界正逐渐达成这样的普遍共识:数据是企业的重要战略资源,大数据应用能力将会成为企业成长和竞争的关键。对企业来说,选择正确的大数据发展道路,是大数据战略得以落实的首要条件。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05