京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业大数据应用的拓展之路
大数据的应用模式
企业日常经营中,与数据相关的工作可划分为3个层次,分别是:数据、产品、商业。与之相对应,对大数据的应用模式分别为数据分析、数据模型、数据业务。
1.数据层面。主要围绕数据本身开展“数据分析”的工作,对各类数据的统计分析是主要形式。企业日常经营活动中会产生各种各样的数据,通过使用数据库软件、编写脚本和程序、利用各种数据挖掘软件可以从数据中得到各种基本统计信息,例如业务量、客户增长率、财务指标情况、风险指标变化,等等。“数据分析”工作具有明确的目标指向性,工作过程相对明确,工作效果易显现。
2.产品层面。当数据和产品之间建立起紧密的联系,基于数据而研发的大量“数据模型”就成为各类产品的重要组成部分,从“数据模型”中发现的规律成为产品运营和优化的重要依据。例如,在面向C端用户的产品中,可以通过分析用户的历史行为特征数据形成用户画像模型,据此提供个性化推荐功能,还可以通过分析海量用户在使用产品时过程路径的特点形成用户操作模型,据此优化产品的业务流程设计;在面向B端用户的产品中,可以通过分析其历史经营数据、进行同业数据横向比较等多种方式,形成经营特征模型,提供丰富的经营决策支持功能。“数据模型”正日益成为各类产品不可或缺的一部分,借助“数据模型”,数据对产品在功能设计、运营全流程的支持作用日益凸显。
3.商业层面。数据不再是其它工作的辅助、不再是配角,以数据价值挖掘和利用为核心的“数据业务”成为业务发展的重要支撑。“数据业务”能为业务发展开拓新的方向,是业务转型和创新发展的重要抓手。虽然这3个层次的工作没有必然的先后顺序,但一般的企业都从“数据分析”入手,逐步向“数据模型”演进,并期待开启“数据业务”。“数据分析”中积累的经验能为“数据模型”的研发提供很好的基础,“数据模型”中获得的认知与洞察是“数据业务”顺利开展的重要逻辑支撑。不同层面的数据工作各有其用武之地,都能体现各自的价值,为特定工作带来帮助。
推动大数据应用的关键举措
为能够顺利推动大数据应用成功,当前需要从机制保障、技术支撑、数据治理、应用设计、合作联动等方面发力。
1.机制保障。对很多企业来说,当前正处于大数据应用发展的战略机遇期。需要企业在从组织、财力和人力等方面给予大数据工作相应的保障,对大数据项目采取相对灵活的财务预算及收益计算政策,通过引进高水平人才、进行系统化培训、激励政策倾斜等措施,打造出高水平、多层次的数据人才队伍,等等。
2.技术支撑。要想大数据应用取得成功,建立以统一的大数据平台为核心的技术支撑体系必不可少。大数据平台应具备海量的数据存储能力、快速的分析挖掘能力、高效的数据访问能力以及丰富的可视化展现能力等基础能力,形成面向数据内容、服务、产品的立体架构,满足企业内外部各类数据服务需求。在大数据平台的建设过程中,应注意做好传统技术与新兴技术的适当运用、大数据平台与其它应用系统的高效互通、统一处理与分散应用的合理布局、长远规划与眼前需求的综合考量等工作。
3.数据治理。完善的数据治理可以确保数据的可用性、完整性及一致性,是大数据平台良性运转、数据得到合理管理、数据价值得以充分利用的必要条件。数据治理是企业大数据战略实施的重要基础,只有在企业内部建立一套行之有效的数据治理体系,企业才会真正进入商业智能的大数据时代。数据治理是一项长期、艰苦的重要工作,需要得到从上到下的高度重视和自始至终的一贯执行,才能确保企业大数据战略的长期有效执行。
4.应用设计。大数据的价值最终需要通过大数据的各类应用模式来体现。在“数据分析”层面,应充分挖掘大数据对智能运营、精准营销、客户服务、风险管控等各方面工作的支撑作用,提高工作效率,优化工作模式。在“数据模型”层面,一方面,需要为各类产品设计丰富的大数据元素,提供相应的数据支持,丰富产品功能,优化用户体验,增强用户粘性;另一方面,也需要在各类产品设计中贯彻大数据思维,将收集各类数据、获取用户授权、记录行为模式、产品自身评估和优化等工作渗透到产品设计、研发和运营的各个环节,为大数据长期发展提供坚实的数据基础。在“数据业务”层面,需要充分利用好内外部各类数据,规划、设计和研发以大数据服务为核心的创新产品,丰富产品体系,形成新的业务收入来源。
5.合作联动。企业的大数据应用想要取得更大的成功,良好的外部合作与联动也是重要的途径。在数据内容的丰富、数据处理技术和价值挖掘的经验借鉴、数据应用的推广、数据工作影响力的拓展等诸多方面,合适的外部合作伙伴往往能提供很好的帮助,起到事半功倍的效果。除此之外,企业在大数据应用开拓方面,选择专业的数据服务商也至关重要。中科点击作为行业大数据应用专家,凭借多年大数据应用实战经验,形成了一套标准化的产品开发模式,已经为汽车、金融、教育、电商、医美等众多行业提供了定制化的大数据服务。
当前,我们正在进入一个崭新的大数据时代。各界正逐渐达成这样的普遍共识:数据是企业的重要战略资源,大数据应用能力将会成为企业成长和竞争的关键。对企业来说,选择正确的大数据发展道路,是大数据战略得以落实的首要条件。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03