京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业大数据应用的拓展之路
大数据的应用模式
企业日常经营中,与数据相关的工作可划分为3个层次,分别是:数据、产品、商业。与之相对应,对大数据的应用模式分别为数据分析、数据模型、数据业务。
1.数据层面。主要围绕数据本身开展“数据分析”的工作,对各类数据的统计分析是主要形式。企业日常经营活动中会产生各种各样的数据,通过使用数据库软件、编写脚本和程序、利用各种数据挖掘软件可以从数据中得到各种基本统计信息,例如业务量、客户增长率、财务指标情况、风险指标变化,等等。“数据分析”工作具有明确的目标指向性,工作过程相对明确,工作效果易显现。
2.产品层面。当数据和产品之间建立起紧密的联系,基于数据而研发的大量“数据模型”就成为各类产品的重要组成部分,从“数据模型”中发现的规律成为产品运营和优化的重要依据。例如,在面向C端用户的产品中,可以通过分析用户的历史行为特征数据形成用户画像模型,据此提供个性化推荐功能,还可以通过分析海量用户在使用产品时过程路径的特点形成用户操作模型,据此优化产品的业务流程设计;在面向B端用户的产品中,可以通过分析其历史经营数据、进行同业数据横向比较等多种方式,形成经营特征模型,提供丰富的经营决策支持功能。“数据模型”正日益成为各类产品不可或缺的一部分,借助“数据模型”,数据对产品在功能设计、运营全流程的支持作用日益凸显。
3.商业层面。数据不再是其它工作的辅助、不再是配角,以数据价值挖掘和利用为核心的“数据业务”成为业务发展的重要支撑。“数据业务”能为业务发展开拓新的方向,是业务转型和创新发展的重要抓手。虽然这3个层次的工作没有必然的先后顺序,但一般的企业都从“数据分析”入手,逐步向“数据模型”演进,并期待开启“数据业务”。“数据分析”中积累的经验能为“数据模型”的研发提供很好的基础,“数据模型”中获得的认知与洞察是“数据业务”顺利开展的重要逻辑支撑。不同层面的数据工作各有其用武之地,都能体现各自的价值,为特定工作带来帮助。
推动大数据应用的关键举措
为能够顺利推动大数据应用成功,当前需要从机制保障、技术支撑、数据治理、应用设计、合作联动等方面发力。
1.机制保障。对很多企业来说,当前正处于大数据应用发展的战略机遇期。需要企业在从组织、财力和人力等方面给予大数据工作相应的保障,对大数据项目采取相对灵活的财务预算及收益计算政策,通过引进高水平人才、进行系统化培训、激励政策倾斜等措施,打造出高水平、多层次的数据人才队伍,等等。
2.技术支撑。要想大数据应用取得成功,建立以统一的大数据平台为核心的技术支撑体系必不可少。大数据平台应具备海量的数据存储能力、快速的分析挖掘能力、高效的数据访问能力以及丰富的可视化展现能力等基础能力,形成面向数据内容、服务、产品的立体架构,满足企业内外部各类数据服务需求。在大数据平台的建设过程中,应注意做好传统技术与新兴技术的适当运用、大数据平台与其它应用系统的高效互通、统一处理与分散应用的合理布局、长远规划与眼前需求的综合考量等工作。
3.数据治理。完善的数据治理可以确保数据的可用性、完整性及一致性,是大数据平台良性运转、数据得到合理管理、数据价值得以充分利用的必要条件。数据治理是企业大数据战略实施的重要基础,只有在企业内部建立一套行之有效的数据治理体系,企业才会真正进入商业智能的大数据时代。数据治理是一项长期、艰苦的重要工作,需要得到从上到下的高度重视和自始至终的一贯执行,才能确保企业大数据战略的长期有效执行。
4.应用设计。大数据的价值最终需要通过大数据的各类应用模式来体现。在“数据分析”层面,应充分挖掘大数据对智能运营、精准营销、客户服务、风险管控等各方面工作的支撑作用,提高工作效率,优化工作模式。在“数据模型”层面,一方面,需要为各类产品设计丰富的大数据元素,提供相应的数据支持,丰富产品功能,优化用户体验,增强用户粘性;另一方面,也需要在各类产品设计中贯彻大数据思维,将收集各类数据、获取用户授权、记录行为模式、产品自身评估和优化等工作渗透到产品设计、研发和运营的各个环节,为大数据长期发展提供坚实的数据基础。在“数据业务”层面,需要充分利用好内外部各类数据,规划、设计和研发以大数据服务为核心的创新产品,丰富产品体系,形成新的业务收入来源。
5.合作联动。企业的大数据应用想要取得更大的成功,良好的外部合作与联动也是重要的途径。在数据内容的丰富、数据处理技术和价值挖掘的经验借鉴、数据应用的推广、数据工作影响力的拓展等诸多方面,合适的外部合作伙伴往往能提供很好的帮助,起到事半功倍的效果。除此之外,企业在大数据应用开拓方面,选择专业的数据服务商也至关重要。中科点击作为行业大数据应用专家,凭借多年大数据应用实战经验,形成了一套标准化的产品开发模式,已经为汽车、金融、教育、电商、医美等众多行业提供了定制化的大数据服务。
当前,我们正在进入一个崭新的大数据时代。各界正逐渐达成这样的普遍共识:数据是企业的重要战略资源,大数据应用能力将会成为企业成长和竞争的关键。对企业来说,选择正确的大数据发展道路,是大数据战略得以落实的首要条件。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27