
物联网大势发展, 大数据是必不可少的
据报道,物联网技术应用多数领域的发展都尚待时间成熟,业界目前的看法是先找出杀手级应用,建立示范作用,再将其模式逐步复制到其他领域,但要选择哪个领域作为杀手级应用?业界看法却莫衷一是,家庭自动化、楼宇自动化、远程控制、节能相关应用等,都是可能的杀手级应用。
物联网的发展正在以指数级的速度增长,而企业也正在利用其力量寻求进一步的业务提高。而对于物联网来讲,最大的挑战并不是连接,而是物联网的真正组成——数据。
1、物联时代数据核心
物联网的增长速度飞快,并且开始借助技术的力量触摸到每个行业。物联网将每个可能沟通起来的对象串联起来,将传统设备转化为智能设备,为企业开辟新的技术收入流。而物联网潜在的革命性也让企业的每个部门都会受到影响。
物联网既然由"物"串联而成,那么一切设备都可能成为未开发的资源。像互联网一样,物联网也包含了网络信息的交互和访问。这使得硬件设备扮演了关键的角色,而信息不平等、客户服务、社会福利和智慧度不足的生态系统都可能会影响到物联网的发展。而让万物拥有智慧的计划在近几年来基于技术基础不断推展,其具有的智慧和洞察力会产生更多可开采数据,从而让物联网的商业价值得到进一步提高。
2、物联网全方位爆发
目前,大量的物联网设备正在涌入市场,根据国外相关机构预测,物联网智能设备的数量在今年有望增长15%,达到200亿。而从设计、制造、相关软件和组件的生产等各个相关行业也会进入物联网生态系统,从而造就更多行业利润的增加。利用物联网设备进行智能分析和数据收集是涉及到所有行业利润驱动的核心。
从一项调查中来看,目前大约有65%的企业正在使用或者计划使用物联网解决方案解决业务问题。而在投资方面,物联网的资金投入从2015年的2150亿美元增长到2020年的8320亿美元,而且未来几年,企业还将不停的寻找物联网技术新的应用领域。
3、大数据必不可少
在这种情况下,数据的采集和分析必须要跟上设备开发与部署的节奏,其对于物联网至关重要。物联网的数据挖掘关乎业务范围和公司前景的发展,同时这些数据可以帮助物联网发掘潜力,寻找存在的问题,形成良性循环。
通过对专业的知识对这些数据进行分析后,物联网企业和运营商都可以从中获取更高的利润,改善用户体验,重新审视当前的运营模式,评估知识水准。而物联网数据本身就是一种大数据,是从大量传感器中收集,通过设备和云计算获取结构化、实时流信息的来源。因此,物联网项目的成功与否取决于可不可以智能的利用收集到的数据。便携式医疗仪器健康一体机嵌入式主板终端产品。
目前,仅有1/3的欧洲企业可以分析他们的物联网项目中所产生的大量数据,这就意味着很多的项目尚未对数据中隐藏的价值开始进行探索。而长远来看,这将很可能使得企业错失新的物联网机会,缺乏物联网洞察的帮助,在为消费者提供定制化服务时也将困难重重。在新的商业模式中,利用这些数据可以解决货币化问题,保护企业的商业底线,确定新的商业方向。
4、物联网数据分析需要保持稳定性
物联网数据分析有很多因素是十分重要的。首先,保持7*24不间断的数据能见度是非常重要的,实时的分析能够为物联网项目提供整体把控支持。这其中可能会包括了大量的设备、传感器、网络和连接。公司还需要能够实时的查看当前数据、网络技术、bi以及网络部署等状态,保持控制。
建立统一平台,能够提供收集的数据对资产甚至客户行为的影响,帮助企业了解客户行为和细节,借此提升管理服务质量。这将有利于改善现有服务,推出新产品,开辟新的收入来源和服务提供商,保持市场竞争的优势。
5、物联网数据安全当先
在平台之上应该有专业的监管人员或者设备。一方面可以提升企业对数据的把握,另一方面,一旦产生任何可能会对物联网基础设施产生干扰的活动时可以迅速进行过滤。由于物联网的网络承担了重要的认为,其数据流量需要保障可靠和安全性,也要保障整体网络的韧性。
一般来讲,物联网网络与运营商的合作会产生新的机遇。物联网是一个新的领域,开发新的api,采用新的技术可以更好的为之服务。而所有的系统功能、属性等都可以通过api来获取服务、供应、配置、统计甚至智能化的业务终端等。长远来看,物联网服务的提供者可以成为it企业的合作伙伴,进一步提高不同企业间的工作效率。而相应的数据将会成为一种新的货币,掌握了这部分api数据的运营商自然会成为得利者。
6、物联网安全不可低估
物联网的安全和隐私也是值得关注的部分,超过25%的企业认为,安全和隐私问题是物联网投资的主要障碍。而这一点在设备方面尤其重要,目前物联网用于医疗领域的阻碍也是限制于安全方面的考虑。物联网网络需要在相关数据、设备可靠性、安全性、执行等多个方面达到最优水平。
当前时代中,物联网的发展速度十分喜人。设备和服务的早期投入已久开始回馈消费者和工业应用,而这一趋势还在加速中,现如今需要的是让整个物联网体系更为智能的方法。而大数据,无疑是另一个可靠的技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12