
物联网大势发展, 大数据是必不可少的
据报道,物联网技术应用多数领域的发展都尚待时间成熟,业界目前的看法是先找出杀手级应用,建立示范作用,再将其模式逐步复制到其他领域,但要选择哪个领域作为杀手级应用?业界看法却莫衷一是,家庭自动化、楼宇自动化、远程控制、节能相关应用等,都是可能的杀手级应用。
物联网的发展正在以指数级的速度增长,而企业也正在利用其力量寻求进一步的业务提高。而对于物联网来讲,最大的挑战并不是连接,而是物联网的真正组成——数据。
1、物联时代数据核心
物联网的增长速度飞快,并且开始借助技术的力量触摸到每个行业。物联网将每个可能沟通起来的对象串联起来,将传统设备转化为智能设备,为企业开辟新的技术收入流。而物联网潜在的革命性也让企业的每个部门都会受到影响。
物联网既然由"物"串联而成,那么一切设备都可能成为未开发的资源。像互联网一样,物联网也包含了网络信息的交互和访问。这使得硬件设备扮演了关键的角色,而信息不平等、客户服务、社会福利和智慧度不足的生态系统都可能会影响到物联网的发展。而让万物拥有智慧的计划在近几年来基于技术基础不断推展,其具有的智慧和洞察力会产生更多可开采数据,从而让物联网的商业价值得到进一步提高。
2、物联网全方位爆发
目前,大量的物联网设备正在涌入市场,根据国外相关机构预测,物联网智能设备的数量在今年有望增长15%,达到200亿。而从设计、制造、相关软件和组件的生产等各个相关行业也会进入物联网生态系统,从而造就更多行业利润的增加。利用物联网设备进行智能分析和数据收集是涉及到所有行业利润驱动的核心。
从一项调查中来看,目前大约有65%的企业正在使用或者计划使用物联网解决方案解决业务问题。而在投资方面,物联网的资金投入从2015年的2150亿美元增长到2020年的8320亿美元,而且未来几年,企业还将不停的寻找物联网技术新的应用领域。
3、大数据必不可少
在这种情况下,数据的采集和分析必须要跟上设备开发与部署的节奏,其对于物联网至关重要。物联网的数据挖掘关乎业务范围和公司前景的发展,同时这些数据可以帮助物联网发掘潜力,寻找存在的问题,形成良性循环。
通过对专业的知识对这些数据进行分析后,物联网企业和运营商都可以从中获取更高的利润,改善用户体验,重新审视当前的运营模式,评估知识水准。而物联网数据本身就是一种大数据,是从大量传感器中收集,通过设备和云计算获取结构化、实时流信息的来源。因此,物联网项目的成功与否取决于可不可以智能的利用收集到的数据。便携式医疗仪器健康一体机嵌入式主板终端产品。
目前,仅有1/3的欧洲企业可以分析他们的物联网项目中所产生的大量数据,这就意味着很多的项目尚未对数据中隐藏的价值开始进行探索。而长远来看,这将很可能使得企业错失新的物联网机会,缺乏物联网洞察的帮助,在为消费者提供定制化服务时也将困难重重。在新的商业模式中,利用这些数据可以解决货币化问题,保护企业的商业底线,确定新的商业方向。
4、物联网数据分析需要保持稳定性
物联网数据分析有很多因素是十分重要的。首先,保持7*24不间断的数据能见度是非常重要的,实时的分析能够为物联网项目提供整体把控支持。这其中可能会包括了大量的设备、传感器、网络和连接。公司还需要能够实时的查看当前数据、网络技术、bi以及网络部署等状态,保持控制。
建立统一平台,能够提供收集的数据对资产甚至客户行为的影响,帮助企业了解客户行为和细节,借此提升管理服务质量。这将有利于改善现有服务,推出新产品,开辟新的收入来源和服务提供商,保持市场竞争的优势。
5、物联网数据安全当先
在平台之上应该有专业的监管人员或者设备。一方面可以提升企业对数据的把握,另一方面,一旦产生任何可能会对物联网基础设施产生干扰的活动时可以迅速进行过滤。由于物联网的网络承担了重要的认为,其数据流量需要保障可靠和安全性,也要保障整体网络的韧性。
一般来讲,物联网网络与运营商的合作会产生新的机遇。物联网是一个新的领域,开发新的api,采用新的技术可以更好的为之服务。而所有的系统功能、属性等都可以通过api来获取服务、供应、配置、统计甚至智能化的业务终端等。长远来看,物联网服务的提供者可以成为it企业的合作伙伴,进一步提高不同企业间的工作效率。而相应的数据将会成为一种新的货币,掌握了这部分api数据的运营商自然会成为得利者。
6、物联网安全不可低估
物联网的安全和隐私也是值得关注的部分,超过25%的企业认为,安全和隐私问题是物联网投资的主要障碍。而这一点在设备方面尤其重要,目前物联网用于医疗领域的阻碍也是限制于安全方面的考虑。物联网网络需要在相关数据、设备可靠性、安全性、执行等多个方面达到最优水平。
当前时代中,物联网的发展速度十分喜人。设备和服务的早期投入已久开始回馈消费者和工业应用,而这一趋势还在加速中,现如今需要的是让整个物联网体系更为智能的方法。而大数据,无疑是另一个可靠的技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23