京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据营销知多少
随着移动互联网的发展和移动智能设备功能的不断完善,网民上网和消费习惯发生了巨大变化,人们的行为方由传统的PC端为主转变为向“PC端 移动端”转变,呈现出跨屏互动的趋势,大数据的作用也日益突出。然而对于大数据及营销你知多少呢?它到底有哪些价值?不妨从以下几方面来看。
Q1:大数据让人们的营销行为和消费行为皆数据化
如今海量数据受到重视并得以利用,数据使得营销行动目标明确、可追踪、可衡量、可优化。大数据营销可通过把“数据”当成营销运营的核心部分,打造符合企业品牌及产品特质的数据体系和数据应用。这得益于有了庞大的大数据,有效且高质量的数据为企业更好的创造价值比大海捞针的粗放式玩儿法要实际的多。然而数字时代,一个品牌不仅仅在收集数据,同时也在制造和影响数据,如何塑造和运营更加有利于企业和品牌营销发展的数据流,必然成为今后品牌营销必须面对的重要课题。因为大数据不是目的,营销投入的关键是要获得利润回报,如何合理运用数据最大化影响营销投入与产出才是最终根本所在。
Q2:大数据营销让社交网络营销渠道更具价值
为何这么说呢?是因为通过大数据抓取用户,让社交平台价值倍增,而大数据营销不仅起到了一个连接社交平台,精准抓取用户的作用,而且通过数据整理做营销后提炼大众意见去做产品,完成了社交平台营销中的最基础环节。这表现在,一个新产品的推广中,完全可以利用大数据来整理用户需求利用粉丝力量,设计出新的产品,而众多参与者就是最原始的购买群体,随之打开销售渠道。
Q3:大数据营销实现线上线下结合后进入多屏时代
目前的数据挖掘更多是线上数据的分析和挖掘,未来的关键点就在于如何能够实现线上线下数据的打通。一旦线上的数据和广告主的第一方数据相结合,大数据营销在更精准的基础上就会做到人群量的扩大。多屏时代的到来,正在把受众的时间、行为分散到各个屏幕上,而广告主想要更好地抓住消费者的兴趣点,就需要实现多屏的程序化购买。未来大数据营销的大趋势便是多屏整合下的数字营销。
Q4:大数据营销是“大规模个性化互动”实现高效转化的基础
在银屏时代,营销的核心是品牌形象传递;在互联网门户时代,营销的核心是数字化媒介购买;而在以移动,社会化代表的互联网3.0时代,营销的核心是实现“大规模的个性化互动”。这里的互动指更加广义上的接触点策略,比如更加有针对性的传播内容,更加人性化的客服信息,千人千面的个性化页面,而实现这一核心的基础就是消费者大数据的管理。大规模代表效率,个性化代表更好的转化效果。因此,所谓大数据营销的价值就在于能够实现更加高效的转化。每个公司所处的阶段不同,关心的问题也不同。未来除了广告平台以外,品牌主会更加关注其消费者生命周期的数据管理,与平台合作,实现在多个接触点上的个性化沟通。
Q5:大数据营销让营销更加精准、有效
目前在营销过程中涉及数据方面的繁多而且复杂,这时需要对数据的有效性进行过滤,例如行为噪声,重复数据,非目标用户数据等等。现在的大数据技术虽然可以让营销动作做得更加精准、有效,但做起来并不容易。因此,未来基于大数据技术的优化,大数据营销的精准性将带来更多的商业价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12