
大数据时代,企业如何借力成长
伴随着互联网、移动互联网的飞速发展和大数据技术的不断革新,一个全新的大数据时代即将来袭。掌握数据资产,进行智能化决策,已成为企业脱颖而出的关键。大数据资产逐渐成为现代商业社会的核心竞争力,大数据对行业用户的重要性也日益突出。因此,越来越多的企业开始重视大数据战略布局,并重新定义自己的核心竞争力。
利用数据库营销与消费者建立紧密关系
企业的市场营销需要洞察用户,精准发掘目标受众。其关键在于目标受众的筛选,最理想的模式是定位消费者的基本属性特征(如性别、年龄、职业、家庭情况、购买力、意识属性等)、消费行为特征,通过对其精准衡量和分析,建立相应的数据体系,再通过数据分析进行顾客优选,并通过市场测试来验证所做的定位是否准确有效。
挖掘用户的行为习惯和喜好,凌乱纷繁的数据背后找到更符合用户兴趣和习惯的产品和服务,并对产品和服务进行针对性地调整和优化,这就是大数据的价值。大数据也日益显现出对各个行业的推进力。
企业要拥有自己的营销数据库,它的内容涵盖可以是现有顾客和潜在顾客。这个数据库是动态的,可以随时扩充和更新。基于对这个数据库的分析,能帮企业确认目标消费者,更迅速、更准确地抓住他们的需要,然后用更有效的方式把产品和服务信息传达给他们。
数据库营销的出现,就在一定程度上加强了企业营销的秘密性。可与消费者建立紧密关系,一般不会引起竞争对手的注意,避免公开对抗。如今,很多知名企业都将这种现代化的营销手段运用到了自身的企业,将其作为一种秘密武器运用于激烈的市场竞争中去,从而在市场上站稳了脚跟。
了解竞争对手数据,知己知彼百战百胜
搜集竞争对手数据的根本目标是通过一切可获得的信息来查清竞争对手的状况,包括:产品及价格策略、渠道策略、营销(销售)策略、竞争策略、研发策略、财务状况及人力资源等,发现其竞争弱势点,帮助企业制定恰如其分的进攻战略,扩大自己的市场份额;另外,对竞争对手最优势的部分,需要制定回避策略,以免发生对企业的损害事件。
企业根据搜集到的竞争对手数据,对数据进行分析,了解竞争对手状况,以此来帮助企业制定企业产品的价格,让企业的产品更具有在市场立足的竞争力。企业必须广泛推行以事实为基础的决策方法,大量使用数据分析来优化企业的各个运营环节,通过基于数据的优化和对接,把业务流程和过程当中存在的每一分潜在的价值都挤出来,从而节约成本,战胜对手,在市场上幸存。
全面了解竞争对手的战略能力,在分析研究了竞争对手的目标与途径之后,还要深入研究竞争对手是否具有能力采用其他途径实现其目标。这就涉及到企业如何规划自己的战略以应对竞争。
如果较之竞争对手本企业具有全面的竞争优势,那么则不必担心在何时何地发生冲突。如果竞争对手具有全面的竞争优势,那么只有两种办法:或是不要触怒竞争对手,甘心做一个跟随者,或是避而远之。如果不具有全面的竞争优势,而是在某些方面、某些领域具有差别优势,则可以在自己具有的差别优势的方面或领域把文章做足,但要避免以己之短碰彼之长。
把握商机,善用行业和市场数据
面对不同行业纷繁芜杂的海量数据,企业如何把握商机,充分利用这些数据?无论从行业数据还是市场数据来看,大数据带来的安全挑战日益突出,企业在利用数据为企业带来收益的同时,应避免造成“大数据即大风险”的可怕后果。
目前,许多大数据技术尚未成熟,许多公司仍处于大数据的研发阶段,企业快速采用和实施诸如云服务等新技术还是存在不小的压力,而要使大数据真正成为行业应用的主流,大数据技术必须有进一步的发展,使应用更加简易。
面对大数据行业应用的快速发展及所面临的种种挑战,为提高企业的核心竞争力,前瞻投资顾问提出以下建议:首先,提供数据交易、迁移、存储、处理、分析的实时平台,满足行业用户在大数据挑战下快速、实时的处理和服务需求;第二,将大量结构化与非结构化的数据进行整合处理,融合云计算应用程序,将其集成到电脑及各种工程系统中,使用户工作简化;第三,打造大数据优化解决方案,在确保数据真实性的前提下,有效处理大规模、多样化、高速流动的数据,帮助用户获取对业务的洞察,以制定相应的策略,实现业务的快速突破和成长;最后,创建数据的管道化管理流程,以数据集聚为依托,以各种数据应用为驱动,面向用户呈现丰富的界面形式,来展现数据分析的结果,完成数据的汇总、应用分析及结果呈现的完整流程。
挖掘企业内部数据,提高企业决策力
数据先行已成为全球企业共识,一方面,企业的管理效率取决于企业的内部数据的流通,通过对企业内部数据的采集、整理、挖掘和分析,为企业组织内的各层次人员提供信息,提高企业的决策能力,加快决策速度,确保决策准确性,同时实现企业内部的管理效率。另一方面,也为企业的产品质量的把握提供有效的信息,共同分享销售、库存等商业数据,共同进行品类分析和管理,提升产品品质。企业内部数据分析是指将企业的各种数据及时地转换为企业管理者感兴趣的信息,并以各种方式展现出来,帮助企业管理者进行科学决策,加强企业的竞争优势。
大数据时代,企业一定要跟上潮流,顺应时代的发展,充分的利用大数据来为企业发展服务。企业通过利用多个数据源的信息以及应用经验和假设,促进对企业动态特性的准确理解,以便提高企业的决策能力。它通过数据的获取、管理和分析,为企业组织的各种人员提供信息,以提高企业的战略和战术决策能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23