
保险公司实现大数据价值的三个阶段
越来越多的保险公司开始对大数据技术和非结构化数据环境进行投资,但是这些项目依然还处于“创新”的范畴,这意味着这些项目的投资回报率还无法确定。即使保险公司的高管们心中并没有一个明确的目标或者详实的应用案例,他们依然对大数据技术的前景感到非常乐观,认为时间将会证明该技术的价值。但是,所有大规模技术创新,都需要资本市场的支持才能进入健康的发展周期,因此,切实有效的落地实践宜早不宜迟。
所有大数据技术的目标,都是消化处理结构化和非结构化的数据,生成新的数据环境类型。实际上,大多数保险公司都是在利用大数据技术消化他们核心系统中的结构化数据。“消化数据”的概念其实并不简单,关系型数据库中复杂的数据映射技术在大数据中依然必不可少。保险公司如果想让以创新为焦点的大数据计划成长为公司内部长久有价值的基础设施,必须经历以下三个阶段。
第一阶段:数据存储
数据消化的第一级其实就是扁平化的数据存储。这意味着所有的数据——不管是非结构化的文件还是关系数据库中的冗余档案——都要被迁移到一个轻微调整甚至没有调整过的非结构化数据环境中去。如果大数据系统已经就位,以上步骤可以快速完成,特别是数据集较少的时候。但是,这一阶段,除了分布式存储数据,大数据技术并没有提供太多的价值。
一些拥有海量数据的组织和企业,他们的数据存档成本很高。通过利用分布式系统的基础架构Hadoop,这些组织可以大幅度降低数据存档成本。不过分布式存储并不是保险业目前最关心的,因为保险公司同时还在尝试物联网、车联网、无人机以及其他会产生大量数据的技术。但是,分布式存储的解决方案还是让保险公司在懂得如何充分利用数据前,有了一个可以收集和存储所有数据的方法。
第二阶段:数据库重塑
大数据系统的第二级,是数据库的交叉覆盖结构。它允许保险公司从不同的数据集中选取和使用特定数据。这实际上重塑了传统的企业数据库,至少对于终端用户的体验来说是这样的。
使用非结构化数据环境的一个优点是存储于该环境中的数据无需全部标准化。很多企业数据库项目失败或者超预算,就是因为构建一个标准化的数据模型实在是太复杂了,保险公司需要将所有系统和所有业务的数据都纳入建模方案中去。
但是,这并不是说数据标准化就没用了。在某些场景下,通过标准化数据,可以提高数据处理的效率。比如当保险公司需要处理两个来源的数据集时,如果这两个数据集中都有和“客户”标签相关的信息,某种形式的标准化数据模型可以在一个框架下对这两个数据集进行分析。不过和关系数据库不同,这种模型可以在数据获取后再进行定义,而且定义可以只用几个关键的因素。所以本质上说,在非结构化数据环境中,标准化步骤只是被推迟和精简了。
第三阶段:新的观点和能力
大数据系统的第三级,是将新的数据类型和可视化数据覆盖到非结构化数据环境,从而获取新的信息和观点,这些信息和观点是无法用传统数据库技术发掘的。比如说,保险公司建立一个新的数据模型,用复杂的非结构化数据(如车联网相关的数据报告或者无人机获取的图像信息等)覆盖到保险公司的理赔数据上,有可能发现潜在的新风险。
此外,因为在传统数据库中,大量的因子都是被初始标准模型所预设的,由此生成的数据报告会不够全面。大数据系统再加上可视化技术,可以对大量的数据集进行扫描检查,从而能够识别出所有的异常数据和因子。
价值证明,越早越好
非结构化数据环境的最大优点和价值之一在于,保险公司无需在部署该技术的早期阶段就将自己所有的历史数据都迁移到新系统,他们可以循序渐进,在项目成熟后再完成数据的完整迁移。
在传统的企业数据库中,初期建模时如果忽略了一些数据和因素,可能会导致后期系统运作的失效,甚至会产生严重后果。所以该类型数据库的容错率较低。
而在非结构化数据环境中,则不会这样。这意味着保险公司在利用Hadoop或者其他分布式存储数据库时,可以先利用一些数据源进行试验,积累经验和专业知识,基础打好后,再不断地加入和覆盖新的数据到该环境中。
事实上,不管是创业公司为了获得持续的融资来开发大数据技术,还是传统保险公司为了获得足额的预算来进行大数据部署,开发团队应该尽快达到上述的第三阶段。这样不仅能让商业用户尽早的验证模式的可行性和数据的可靠性,还能在实践中不断发掘大数据技术新的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18