保险公司实现大数据价值的三个阶段
越来越多的保险公司开始对大数据技术和非结构化数据环境进行投资,但是这些项目依然还处于“创新”的范畴,这意味着这些项目的投资回报率还无法确定。即使保险公司的高管们心中并没有一个明确的目标或者详实的应用案例,他们依然对大数据技术的前景感到非常乐观,认为时间将会证明该技术的价值。但是,所有大规模技术创新,都需要资本市场的支持才能进入健康的发展周期,因此,切实有效的落地实践宜早不宜迟。
所有大数据技术的目标,都是消化处理结构化和非结构化的数据,生成新的数据环境类型。实际上,大多数保险公司都是在利用大数据技术消化他们核心系统中的结构化数据。“消化数据”的概念其实并不简单,关系型数据库中复杂的数据映射技术在大数据中依然必不可少。保险公司如果想让以创新为焦点的大数据计划成长为公司内部长久有价值的基础设施,必须经历以下三个阶段。
第一阶段:数据存储
数据消化的第一级其实就是扁平化的数据存储。这意味着所有的数据——不管是非结构化的文件还是关系数据库中的冗余档案——都要被迁移到一个轻微调整甚至没有调整过的非结构化数据环境中去。如果大数据系统已经就位,以上步骤可以快速完成,特别是数据集较少的时候。但是,这一阶段,除了分布式存储数据,大数据技术并没有提供太多的价值。
一些拥有海量数据的组织和企业,他们的数据存档成本很高。通过利用分布式系统的基础架构Hadoop,这些组织可以大幅度降低数据存档成本。不过分布式存储并不是保险业目前最关心的,因为保险公司同时还在尝试物联网、车联网、无人机以及其他会产生大量数据的技术。但是,分布式存储的解决方案还是让保险公司在懂得如何充分利用数据前,有了一个可以收集和存储所有数据的方法。
第二阶段:数据库重塑
大数据系统的第二级,是数据库的交叉覆盖结构。它允许保险公司从不同的数据集中选取和使用特定数据。这实际上重塑了传统的企业数据库,至少对于终端用户的体验来说是这样的。
使用非结构化数据环境的一个优点是存储于该环境中的数据无需全部标准化。很多企业数据库项目失败或者超预算,就是因为构建一个标准化的数据模型实在是太复杂了,保险公司需要将所有系统和所有业务的数据都纳入建模方案中去。
但是,这并不是说数据标准化就没用了。在某些场景下,通过标准化数据,可以提高数据处理的效率。比如当保险公司需要处理两个来源的数据集时,如果这两个数据集中都有和“客户”标签相关的信息,某种形式的标准化数据模型可以在一个框架下对这两个数据集进行分析。不过和关系数据库不同,这种模型可以在数据获取后再进行定义,而且定义可以只用几个关键的因素。所以本质上说,在非结构化数据环境中,标准化步骤只是被推迟和精简了。
第三阶段:新的观点和能力
大数据系统的第三级,是将新的数据类型和可视化数据覆盖到非结构化数据环境,从而获取新的信息和观点,这些信息和观点是无法用传统数据库技术发掘的。比如说,保险公司建立一个新的数据模型,用复杂的非结构化数据(如车联网相关的数据报告或者无人机获取的图像信息等)覆盖到保险公司的理赔数据上,有可能发现潜在的新风险。
此外,因为在传统数据库中,大量的因子都是被初始标准模型所预设的,由此生成的数据报告会不够全面。大数据系统再加上可视化技术,可以对大量的数据集进行扫描检查,从而能够识别出所有的异常数据和因子。
价值证明,越早越好
非结构化数据环境的最大优点和价值之一在于,保险公司无需在部署该技术的早期阶段就将自己所有的历史数据都迁移到新系统,他们可以循序渐进,在项目成熟后再完成数据的完整迁移。
在传统的企业数据库中,初期建模时如果忽略了一些数据和因素,可能会导致后期系统运作的失效,甚至会产生严重后果。所以该类型数据库的容错率较低。
而在非结构化数据环境中,则不会这样。这意味着保险公司在利用Hadoop或者其他分布式存储数据库时,可以先利用一些数据源进行试验,积累经验和专业知识,基础打好后,再不断地加入和覆盖新的数据到该环境中。
事实上,不管是创业公司为了获得持续的融资来开发大数据技术,还是传统保险公司为了获得足额的预算来进行大数据部署,开发团队应该尽快达到上述的第三阶段。这样不仅能让商业用户尽早的验证模式的可行性和数据的可靠性,还能在实践中不断发掘大数据技术新的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03