
政务大数据需坚持的三个基本方向
大数据已经渗透到工业和商业领域的各个方面,成为影响生产的一个重要因素”,大数据的应用涉及经济、文化、教育、医疗、公共管理等各行各业。正是由于大数据的广泛应用及其背后蕴藏的巨大潜力和价值,许多国家纷纷将“大数据”的建设和发展上升为国家战略,积极推动大数据应用的发展。
在全球范围内,运用大数据推动智慧政务正成为趋势,智慧政务以大数据分析为核心,不仅是因为相关数据量大、类型多,更重要的是,对海量数据的深度挖掘与多维剖析可以创造出更大的公共价值,有利于更准确地掌握政务动态变化,发现公众新需求,有效提升政务服务能力。
大数据不仅仅是政府管理的一种新手段或新工具,它还将带来政府管理改革的一个全新阶段。随着大数据在政府管理和公民社会生活的深入,政府部门内部及其与公民社会的关系将被重新建构。技术、组织、关系和行为的再造呼唤全新的管理模式的出现,这种新的管理模式就是数字时代的治理。这种创新的治理模式不只是政府内部自身的数字化变革,还将是广泛深远的社会变革和管理方式的创新。从这个层面看,由大数据应用带来的数字治理模式创新将成为政府管理改革的全新阶段。
一、整体性政府
整体性政府强调政府内部须实现机构、部门、专业、层级等之间的协调整合,以更好地解决公众需求,避免因政府内部矛盾冲突而造成的公共服务效率低下。单一数据源已越来越难以满足应对很多政策领域日益复杂问题的需求,未来将会出现越来越多跨数据集的联系,且在数字时代,政府治理的关键在于整合多数据源的公共管理模式,因此,推动政务大数据应用首先应坚持整体性政府方向,推动政府间的数据共享与业务协同。
相比商业机构而言,政府在推进大数据方面所面临的挑战更加尖锐,因为他们必须在遵从安全性和相关法规的前提下,不断打破部门孤岛来推进数据的集成。
政府部门不仅要应对多数据源和不同格式数据的集成分析等大数据领域通行问题,还要面对很多政府部门特有的挑战和问题。但对推进政务大数据应用而言,无论是对政府自身监管行为所产生的大数据,还是对公民在社交媒体或其他网络平台上所产生的行为数据进行采集和分析,都可能促进政府机构中跨层级的“智能中心”的建立。
二、透明化政府
大数据应用建立在掌握数据的基础上,以海量数据为前提,政务大数据的发展往往离不开政府开放数据,这使得政府的透明度大大提高。数据的开放可以让政府公职人员和民众一起参与进来,解决政府无法完成的、棘手的问题,更广泛地发挥公众力量,借助大数据平台更好地进行社会管理。随着政府组织的行为及其与公众的交互越来越数据化,在政府自身内部系统中产生的各类大数据也为透明性政府建设提供了巨大潜力。在推进政务大数据应用中,政府的监管方式应不断创新,更加透明。随着政府组织越来越“成为”一种前台的网络存在和后台的信息处理系统,大数据也将更有力地促进上述整体性政府的最终形成。
三、服务型政府
大数据可以促进政府公共服务水平的提升,有利于服务型政府的建立。在大数据时代,公众可以更好地参与到政府工作之中,与政府分享信息,形成政府和公众共同参与的政务决策机制。社会公众可以通过社交媒体、公开出版物、博客等渠道分享他们的意见,大数据分析技术可以处理这些非结构化数据,并将更好的服务和方案传递给所需的客户群体。因此,在大数据背景下,任何政府都可以藉由政务大数据的采集、分析和利用,不断推动优化政府自身运作流程和服务效能。而且,政务大数据分析是政府理解公民行为、解释政策与公共服务优劣的良好手段,也是政府决策者理解公众需求与偏好的工具,以更好地理解人们对于公民参与的积极性,对立法变动的态度,以及对政府公共服务的需求。此外,大数据还可有效改进政府绩效管理方法,促进公共服务的提升。以往政府部门的绩效管理往往是滞后的,因为其主要依赖一些事后的指标来评估政府工作的效果。未来,政府管理部门应当更多依靠实时性数据来提升政府管理效能。
大数据作为变革的手段,将引领政务服务转型升级。促成政务服务理念转变和工作流程再造,重塑政务服务工作机理与生态,对相关数据进行有效整合关联,深挖和探究更利企便民的服务方式,由粗放式服务转向精准化定制服务,变被动服务为主动服务,更好地满足公众个性化、定制化及多样化的政务服务需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01