
大数据不仅仅是大,更重要的是应用价值
我们的时代是数据日益渗透生活的时代,大数据与人们的生产生活有着越来越密切的关系。刚刚闭幕的2017中国国际大数据产业博览会又为火热的大数据产业添了一把火,博览会签约金额达167亿余元,签约意向金额为256亿元左右。这一全球首个以大数据为主题的展会,再一次撩起了大数据的神秘面纱,展示了大数据的大能量,一个通过加工处理数据来创造价值的产业正在迅猛发展。
仅仅规模大不是大数据
大数据,顾名思义,“大”该是应有之义,大数据的定义最初与容量有关系。业界有几种对大数据的定义,其中一个共同点就是数据的容量超出了原有的存储、管理和处理能力。
大数据概念产生就是因为数据量和数据类型急剧增加,以至于原有的数据存储、传输、处理以及管理技术不能胜任,需要全新的技术工具和手段。
对于“多大容量的数据才算大数据”,大数据的规模并没有具体的标准,仅仅规模大也不能算作大数据。规模大本身也要从两个维度来衡量,一是从时间序列累积大量的数据,二是在深度上更加细化的数据。
比如一份现在看起来很小的数据,但是纵向积累久了也可以变成大数据,横向与其他数据关联起来也可能形成大数据。而一份很大的数据如果没有关联性、没有价值也不是大数据。
“大”是必要条件,但非充分条件。基于移动互联网用户规模红利,国内平台型企业比较容易获取大量数据,但数据不是越多越好,无用数据就像噪音,会给数据分析、清洗、脱敏和可视化带来负担。很多人以为大数据就是数据量很大,其实大数据的大是大计算的大,大计算 数据,称之为大数据。
“水涨船高”的大数据
大数据概念正是来自信息技术的飞速发展和应用,特别是随着云计算、物联网、移动互联网的应用,数据量迅猛增长。数据来源有两种,一种与人有关,比如政府、企业等为人们服务时产生的数据;另一种与物有关,在移动泛在、万物互联时代,物联网应用的浪潮将带动数据量爆发式增长。
这也就不难理解,为何当下数据产生的速度如此之快。一方面,信息终端大面积普及,信息源大量增加;另一方面,基于云计算的互联网信息平台快速增长,数据向平台大规模集中。
大数据与云计算、物联网、人工智能等新一代信息技术之间相互影响、相互促进、相互融合。云计算是硬件资源的虚拟化,而大数据是海量数据的高效处理。简单来说,云计算是大数据的基础,有了云计算才能大量集中数据从而产生大数据。同时,大数据也支撑了云计算应用创新,带动云计算发展。
人工智能的核心在于大数据支撑。围棋人工智能程序“阿尔法狗”打败柯洁,离不开大数据的支持。大数据技术能够通过数据采集、分析等方式,从海量数据中快速获得有价值的信息,为深度学习等人工智能算法提供坚实的素材基础。反过来,人工智能技术也促进了大数据技术的进步。两者相辅相成,任何一方技术的突破都会促进另外一方的发展。
核心价值在于应用
刚刚过去的“6·18”再次掀起网购热潮。网购消费者基本都被精准推送过广告信息,如曾浏览过电饭煲的消费者,很长一段时间内会在登录页面后看到各品牌电饭煲信息。阿里、京东、360等互联网平台接触消费者众多,也因此获得了很多数据。但是正如精准推送一样,不对这些数据进行处理、挖掘就没法产生价值。
大数据作为重要的基础性战略资源,核心价值在于应用,在于其赋值和赋能作用,在于对大量数据的分析和挖掘后所带来的决策支撑,能够为我们的生产生活、经营管理、社会治理、民生服务等各方面带来高效、便捷、精准的服务。中科点击作为行业大数据应用专家,凭借多年大数据应用实战经验,形成了一套标准化的产品开发模式(16大任务包,196个节点,100天开发周期),已经为汽车、金融、教育、电商、医美等众多行业提供了定制化的大数据服务。
大数据产业也因此有了稳步增长的基础。2016年我国大数据核心产业规模达到3100亿元,按照工信部今年年初发布的《大数据产业发展规划(2016—2020年)》,预计到2020年将达到1万亿元的规模。2016年,我国两批次8个国家级大数据综合试验区开始建设,大数据集聚发展布局初步形成,各区域特色化发展态势初现。众多大数据企业不断创新,开源技术成为大数据技术创新和产业进步的重要力量。大数据在金融、电信、交通等行业领域不断深化应用,催生着新业态,加速着产业升级。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01