
【机器学习】最小中值平方法
最小中值平方法
最小中值平方法是通过求解下面的非线性最小问题来估计参数的
LMedS记录的是所有样本中,偏差值居中的那个样本的偏差,这种方法对错误匹配和外点有很好的鲁棒性。
不像M-estimator,LMedS问题不能直接化简为带权重的最小二乘问题,对于LMedS估计没有一个具体的公式。
LMedS是从样本中随机抽选出一个样本子集,使用LS对子集计算模型参数,然后计算所有样本与该模型的偏差。
具体方法是根据下面方法进行曲线估计:
假设给定n个点:
1.采用Monte Carlo技术进行抽取包含p个点的m个样本集。对于目前的问题,选择p=5,因为5 个点就可以确定一个二次曲线。
2.用每一个样本集求出二次曲线Pj。
3.对于每一个二次曲线Pj,可求出整个数据集残差平方的中值Mj。
对于第i个点到二次曲线 的残差
有多种选择,根据需要的精度和计算效率,可以选择algebraic
distance、Euclidean distance 、gradient weighted distance。
4.求取使得最小的
。
现在的问题是:怎样确定m的值??如果一个样本的p个点均是内点,则为一个好的样本。假设一个数据集包含 的外点,则m个样本中至少有一个是好的样本的概率是
一般包含好点的概率P接近于1,给定p和
若包含外点的百分比=40%,P=0.99,则m=57;可以通过并行算法加快算法的速度,使得对于每个子集的处理均相互独立。
如果数据集存在高斯噪音,LMedS的效率将会非常低。为了弥补这种缺陷,提出了带权重的最小二乘法,标准差的估计由下式给出
为最小的中值。常数1.4826使得在出现高斯噪音的时候,和最小二乘方法的效率一样。5/(n-p)用来补偿数量太少。基于
,我们可以给每一项分配一个权重系数
是第i个点相对于二次曲线P的残差,如果某个点所对应的权重系数为0,则为外点,应剔除掉。二次曲线P则可以由下面带权重的最小二乘问题求解
如前所述,可以通过采用Monte-Carlo技术来提高LMedS方法计算效率。然而,通过这种方法生成的样本中的5个点很有可能非常靠近,这种情况在曲线拟合过程中是应该尽量避免的,因为用这些点进行曲线拟合非常不稳定,而且通常会得到错误的结果。对每一个样本进行有效性检验,将会非常耗时,降低整个算法的计算效率。为了保证算法的鲁棒性和有效性,我们采用一种基于分组的规则的随机抽样法(regularly random selection method based on bucketing techniques),具体实现过程如下:
首先,计算第一幅图像中点坐标的极大极小值,然后将坐标点所在的区域均匀划分成组(在实验中,b=8)。每一个组将包含一系列的点,同时也包括一些匹配点。最后,剔除没有匹配点的分组。为了生成包含5个点的一个样本,首先随机选择5个相互不同的组,然后在每一个组里随机选取一个匹配点。
现在任然存在的问题是:到底需要多少个样本?如果坏点在空间中均匀分布,且每一组有相同的点数,随机选择是一种均匀分布则33式仍然可用。但是,一般情况下各组所包含的点数可能相差会非常大。由此造成的结果就是,包含点数少的组中的点比包含点数多的组中的点被选择地可能性更大。可以用如下的方法来说明:
假设共有I个组,我们将0到1分成I个区间,则第i个区间的宽度是是第i组点的个数。在选择组的过程中,由均匀随机数发生器(uniform
random generator)产生一个0到1的随机数,这个随机数落入哪个区间,则选择哪个组。
Figure 6: Interval and bucket mapping
可以用这种方法对两幅非标定的图像进行匹配。对于给定的两幅未标定图像,唯一能用的几何约束是极线约束。先采用传统的方法(correlation and relaxation methods)找到初始的匹配点,然后利用最小中值平方法(LMedS)剔除初始匹配中的错误匹配。图像间的极线几何关系可以由图像中有实际意义的准则精确估计出来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12