
【机器学习】最小中值平方法
最小中值平方法
最小中值平方法是通过求解下面的非线性最小问题来估计参数的
LMedS记录的是所有样本中,偏差值居中的那个样本的偏差,这种方法对错误匹配和外点有很好的鲁棒性。
不像M-estimator,LMedS问题不能直接化简为带权重的最小二乘问题,对于LMedS估计没有一个具体的公式。
LMedS是从样本中随机抽选出一个样本子集,使用LS对子集计算模型参数,然后计算所有样本与该模型的偏差。
具体方法是根据下面方法进行曲线估计:
假设给定n个点:
1.采用Monte Carlo技术进行抽取包含p个点的m个样本集。对于目前的问题,选择p=5,因为5 个点就可以确定一个二次曲线。
2.用每一个样本集求出二次曲线Pj。
3.对于每一个二次曲线Pj,可求出整个数据集残差平方的中值Mj。
对于第i个点到二次曲线 的残差
有多种选择,根据需要的精度和计算效率,可以选择algebraic
distance、Euclidean distance 、gradient weighted distance。
4.求取使得最小的
。
现在的问题是:怎样确定m的值??如果一个样本的p个点均是内点,则为一个好的样本。假设一个数据集包含 的外点,则m个样本中至少有一个是好的样本的概率是
一般包含好点的概率P接近于1,给定p和
若包含外点的百分比=40%,P=0.99,则m=57;可以通过并行算法加快算法的速度,使得对于每个子集的处理均相互独立。
如果数据集存在高斯噪音,LMedS的效率将会非常低。为了弥补这种缺陷,提出了带权重的最小二乘法,标准差的估计由下式给出
为最小的中值。常数1.4826使得在出现高斯噪音的时候,和最小二乘方法的效率一样。5/(n-p)用来补偿数量太少。基于
,我们可以给每一项分配一个权重系数
是第i个点相对于二次曲线P的残差,如果某个点所对应的权重系数为0,则为外点,应剔除掉。二次曲线P则可以由下面带权重的最小二乘问题求解
如前所述,可以通过采用Monte-Carlo技术来提高LMedS方法计算效率。然而,通过这种方法生成的样本中的5个点很有可能非常靠近,这种情况在曲线拟合过程中是应该尽量避免的,因为用这些点进行曲线拟合非常不稳定,而且通常会得到错误的结果。对每一个样本进行有效性检验,将会非常耗时,降低整个算法的计算效率。为了保证算法的鲁棒性和有效性,我们采用一种基于分组的规则的随机抽样法(regularly random selection method based on bucketing techniques),具体实现过程如下:
首先,计算第一幅图像中点坐标的极大极小值,然后将坐标点所在的区域均匀划分成组(在实验中,b=8)。每一个组将包含一系列的点,同时也包括一些匹配点。最后,剔除没有匹配点的分组。为了生成包含5个点的一个样本,首先随机选择5个相互不同的组,然后在每一个组里随机选取一个匹配点。
现在任然存在的问题是:到底需要多少个样本?如果坏点在空间中均匀分布,且每一组有相同的点数,随机选择是一种均匀分布则33式仍然可用。但是,一般情况下各组所包含的点数可能相差会非常大。由此造成的结果就是,包含点数少的组中的点比包含点数多的组中的点被选择地可能性更大。可以用如下的方法来说明:
假设共有I个组,我们将0到1分成I个区间,则第i个区间的宽度是是第i组点的个数。在选择组的过程中,由均匀随机数发生器(uniform
random generator)产生一个0到1的随机数,这个随机数落入哪个区间,则选择哪个组。
Figure 6: Interval and bucket mapping
可以用这种方法对两幅非标定的图像进行匹配。对于给定的两幅未标定图像,唯一能用的几何约束是极线约束。先采用传统的方法(correlation and relaxation methods)找到初始的匹配点,然后利用最小中值平方法(LMedS)剔除初始匹配中的错误匹配。图像间的极线几何关系可以由图像中有实际意义的准则精确估计出来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26