
机器学习之k-近邻(kNN)算法与Python实现
k-近邻算法(kNN,k-NearestNeighbor),是最简单的机器学习分类算法之一,其核心思想在于用距离目标最近的k个样本数据的分类来代表目标的分类(这k个样本数据和目标数据最为相似)。
一 k-近邻(kNN)算法概述
1.概念
kNN算法的核心思想是用距离最近的k个样本数据的分类来代表目标数据的分类。
其原理具体地讲,存在一个训练样本集,这个数据训练样本的数据集合中的每个样本都包含数据的特征和目标变量(即分类值),输入新的不含目标变量的数据,将该数据的特征与训练样本集中每一个样本进行比较,找到最相似的k个数据,这k个数据出席那次数最多的分类,即输入的具有特征值的数据的分类。
例如,训练样本集中包含一系列数据,这个数据包括样本空间位置(特征)和分类信息(即目标变量,属于红色三角形还是蓝色正方形),要对中心的绿色数据的分类。运用kNN算法思想,距离最近的k个样本的分类来代表测试数据的分类,那么:
当k=3时,距离最近的3个样本在实线内,具有2个红色三角和1个蓝色正方形**,因此将它归为红色三角。
当k=5时,距离最近的5个样本在虚线内,具有2个红色三角和3个蓝色正方形**,因此将它归为蓝色正方形。
2.特点
优点
(1)监督学习:可以看到,kNN算法首先需要一个训练样本集,这个集合中含有分类信息,因此它属于监督学习。
(2)通过计算距离来衡量样本之间相似度,算法简单,易于理解和实现。
(3)对异常值不敏感
缺点 (4)需要设定k值,结果会受到k值的影响,通过上面的例子可以看到,不同的k值,最后得到的分类结果不尽相同。k一般不超过20。(5)计算量大,需要计算样本集中每个样本的距离,才能得到k个最近的数据样本。 (6)训练样本集不平衡导致结果不准确问题。当样本集中主要是某个分类,该分类数量太大,导致近邻的k个样本总是该类,而不接近目标分类。
3.kNN算法流程
一般情况下,kNN有如下流程:
(1)收集数据:确定训练样本集合测试数据;
(2)计算测试数据和训练样本集中每个样本数据的距离;
常用的距离计算公式:
(3)按照距离递增的顺序排序;
(4)选取距离最近的k个点;
(5)确定这k个点中分类信息的频率;
(6)返回前k个点中出现频率最高的分类,作为当前测试数据的分类。二 、Python算法实现
1.KNN算法分类器
建立一个名为“KNN.py”的文件,构造一个kNN算法分类器的函数:
from numpy import *
import operator
#定义KNN算法分类器函数
#函数参数包括:(测试数据,训练数据,分类,k值)
def classify(inX,dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX,(dataSetSize,1))-dataSet
sqDiffMat=diffMat**2
sqDistances=sqDiffMat.sum(axis=1)
distances=sqDistances**0.5 #计算欧式距离
sortedDistIndicies=distances.argsort() #排序并返回index
#选择距离最近的k个值
classCount={}
for i in range(k):
voteIlabel=labels[sortedDistIndicies[i]]
#D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.
classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
#排序
sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]
在KNN.py中定义一个生成“训练样本集”的函数:
#定义一个生成“训练样本集”的函数,包含特征和分类信息在Python控制台先将当前目录设置为“KNN.py”所在的文件目录,将测试数据[0,0]进行KNN算法分类测试,输入:
import KNN
#生成训练样本
group,labels=KNN.createDataSet()
#对测试数据[0,0]进行KNN算法分类测试
KNN.classify([0,0],group,labels,3)
Out[3]: 'B'
可以看到该分类器函数将[0,0]分类为B组,符合实际情况,分入了符合逻辑的正确的类别。但如何知道KNN分类的正确性呢?
2.kNN算法用于约会网站配对
2.1准备数据
该数据在文本文件datingTestSet2.txt中,该数据具有1000行,4列,分别是特征数据(每年获得的飞行常客里程数,玩视频游戏所耗时间百分比,每周消费的冰淇淋公升数),和目标变量/分类数据(是否喜欢(1表示不喜欢,2表示魅力一般,3表示极具魅力)),部分数据展示如下:
完整地数据下载地址如下:
约会网站测试数据
(1)将文本记录转为成numpy
在python控制台输入:
in [5]:datingDataMat,datingLabels=KNN.file2matrix('G:\Workspaces\MachineLearning\machinelearninginaction\Ch02\datingTestSet2.txt')#括号是文件路径
(2)可视化分析数据
运用Matplotlib创建散点图来分析数据:
import matplotlib
import matplotlib.pyplot as plt
#对第二列和第三列数据进行分析:
fig=plt.figure()
ax=fig.add_subplot(111)
ax.scatter(datingDataMat[:,1],datingDataMat[:,2],c=datingLabels)
plt.xlabel('Percentage of Time Spent Playing Video Games')
plt.ylabel('Liters of Ice Cream Consumed Per Week')
#对第一列和第二列进行分析:
fig=plt.figure()
ax=fig.add_subplot(111)
ax.scatter(datingDataMat[:,0],datingDataMat[:,1],c=datingLabels)
plt.xlabel('Miles of plane Per year')
plt.ylabel('Percentage of Time Spent Playing Video Games')
ax.legend(loc='best')
(3)数据归一化
由于不同的数据在大小上差别较大,在计算欧式距离,整体较大的数据明细所占的比重更高,因此需要对数据进行归一化处理。
在Python控制台输入:
reload(KNN)数据的准备工作完成,下一步对算法进行测试。
2.2 算法测试
kNN算法分类的结果的效果,可以使用正确率/错误率来衡量,错误率为0,则表示分类很完美,如果错误率为1,表示分类完全错误。我们使用1000条数据中的90%作为训练样本集,其中的10%来测试错误率。
#定义测试算法的函数在控制台输入命令来测试错误率:
reload(KNN)
Out[150]: <module 'KNN' from 'G:\\Workspaces\\MachineLearning\\KNN.py'>
KNN.datingClassTest()
the classifier came back with: 3,the real answer is: 3
the classifier came back with: 2,the real answer is: 2
the classifier came back with: 1,the real answer is: 1
... ...
the classifier came back with: 2,the real answer is: 2
the classifier came back with: 1,the real answer is: 1
the classifier came back with: 3,the real answer is: 1
the total error rate is : 0.050000
可以看到KNN算法分类器处理约会数据的错误率是5%,具有较高额正确率。
可以在datingClassTest函数中传入参数h来改变测试数据比例,来看修改后Ration后错误率有什么样的变化。
KNN.datingClassTest(0.2)
the classifier came back with: 3,the real answer is: 3
the classifier came back with: 2,the real answer is: 2
the classifier came back with: 1,the real answer is: 1
... ...
the classifier came back with: 2,the real answer is: 2
the classifier came back with: 3,the real answer is: 3
the classifier came back with: 2,the real answer is: 2
the total error rate is : 0.080000
减小训练样本集数据,增加测试数据,错误率增加到8%。
2.3 使用KNN算法进行预测
def classifypersion():测试一下:
reload(KNN)
Out[153]: <module 'KNN' from 'G:\\Workspaces\\MachineLearning\\KNN.py'>
KNN.classifypersion()
percentage of time spent playing video games?10
frequent flier miles earned per year?10000
liters of ice creamconsued per year?0.5
You will probably like this persion :not at all
3. KNN算法用于手写识别系统
已经将图片转化为32*32 的文本格式,文本格式如下:
00000000000111110000000000000000
00000000001111111000000000000000
00000000011111111100000000000000
00000000111111111110000000000000
00000001111111111111000000000000
00000011111110111111100000000000
00000011111100011111110000000000
00000011111100001111110000000000
00000111111100000111111000000000
00000111111100000011111000000000
00000011111100000001111110000000
00000111111100000000111111000000
00000111111000000000011111000000
00000111111000000000011111100000
00000111111000000000011111100000
00000111111000000000001111100000
00000111111000000000001111100000
00000111111000000000001111100000
00000111111000000000001111100000
00000111111000000000001111100000
00000011111000000000001111100000
00000011111100000000011111100000
00000011111100000000111111000000
00000001111110000000111111100000
00000000111110000001111111000000
00000000111110000011111110000000
00000000111111000111111100000000
00000000111111111111111000000000
00000000111111111111110000000000
00000000011111111111100000000000
00000000001111111111000000000000
00000000000111111110000000000000
3.1数据准备
(1)将32*32的文本格式转为成1*2014的向量
在控制台中输入命令测试下函数:
reload(KNN)
3.2 算法测试
使用kNN算法测试手写数字识别
#引入os模块的listdir函数,列出给定目录的文件名
from os impor listdir
def handwritingClassTest():
hwLabels=[]
trainingFileList=listdir('G:/Workspaces/MachineLearning/machinelearninginaction/Ch02/trainingDigits')#列出文件名
m=len(trainingFileList) #文件数目
trainMat=zeros((m,1024))
#从文件名中解析分类信息,如0_13.txt
for i in range(m):
fileNameStr=trainingFileList[i]
fileStr=fileNameStr.split('.')[0]
classNumber=int(fileStr.split('_')[0])
hwLabels.append(classNumber)
trainMat[i]=img2vector('G:/Workspaces/MachineLearning/machinelearninginaction/Ch02/trainingDigits/%s'%fileNameStr)
testFileList=listdir('G:/Workspaces/MachineLearning/machinelearninginaction/Ch02/testDigits')
errorCount=0
#同上,解析测试数据的分类信息
mTest=len(testFileList)
for i in range(mTest):
fileNameStr=testFileList[i]
fileStr=fileNameStr.split('.')[0]
classNumber=int(fileStr.split('_')[0])
vectorUnderTest=img2vector('G:/Workspaces/MachineLearning/machinelearninginaction/Ch02/testDigits/%s'%fileNameStr)
classifierResult=classify(vectorUnderTest,trainMat,hwLabels,3)
print('the classifier came back with :%d,the real answer is:%d'%(classifierResult,classNumber))
if(classifierResult!=classNumber):errorCount+=1
print('\n the total number of errors is: %d'%errorCount)
print('\n total error rate is %f'%(errorCount/float(mTest)))
接下来在Python控制台输入命令来测试手写数字识别:
reload(KNN)
KNN.handwritingClassTest()
the classifier came back with :0,the real answer is:0
the classifier came back with :0,the real answer is:0
the classifier came back with :0,the real answer is:0
... ...
the classifier came back with :9,the real answer is:9
the classifier came back with :9,the real answer is:9
the classifier came back with :9,the real answer is:9
the total number of errors is: 10
total error rate is 0.010571
错误利率1.057%,具有较高的准确率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15