京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习之k-近邻(kNN)算法与Python实现
k-近邻算法(kNN,k-NearestNeighbor),是最简单的机器学习分类算法之一,其核心思想在于用距离目标最近的k个样本数据的分类来代表目标的分类(这k个样本数据和目标数据最为相似)。
一 k-近邻(kNN)算法概述
1.概念
kNN算法的核心思想是用距离最近的k个样本数据的分类来代表目标数据的分类。
其原理具体地讲,存在一个训练样本集,这个数据训练样本的数据集合中的每个样本都包含数据的特征和目标变量(即分类值),输入新的不含目标变量的数据,将该数据的特征与训练样本集中每一个样本进行比较,找到最相似的k个数据,这k个数据出席那次数最多的分类,即输入的具有特征值的数据的分类。
例如,训练样本集中包含一系列数据,这个数据包括样本空间位置(特征)和分类信息(即目标变量,属于红色三角形还是蓝色正方形),要对中心的绿色数据的分类。运用kNN算法思想,距离最近的k个样本的分类来代表测试数据的分类,那么:
当k=3时,距离最近的3个样本在实线内,具有2个红色三角和1个蓝色正方形**,因此将它归为红色三角。
当k=5时,距离最近的5个样本在虚线内,具有2个红色三角和3个蓝色正方形**,因此将它归为蓝色正方形。
2.特点
优点
(1)监督学习:可以看到,kNN算法首先需要一个训练样本集,这个集合中含有分类信息,因此它属于监督学习。
(2)通过计算距离来衡量样本之间相似度,算法简单,易于理解和实现。
(3)对异常值不敏感
缺点 (4)需要设定k值,结果会受到k值的影响,通过上面的例子可以看到,不同的k值,最后得到的分类结果不尽相同。k一般不超过20。(5)计算量大,需要计算样本集中每个样本的距离,才能得到k个最近的数据样本。 (6)训练样本集不平衡导致结果不准确问题。当样本集中主要是某个分类,该分类数量太大,导致近邻的k个样本总是该类,而不接近目标分类。
3.kNN算法流程
一般情况下,kNN有如下流程:
(1)收集数据:确定训练样本集合测试数据;
(2)计算测试数据和训练样本集中每个样本数据的距离;
常用的距离计算公式:
(3)按照距离递增的顺序排序;
(4)选取距离最近的k个点;
(5)确定这k个点中分类信息的频率;
(6)返回前k个点中出现频率最高的分类,作为当前测试数据的分类。二 、Python算法实现
1.KNN算法分类器
建立一个名为“KNN.py”的文件,构造一个kNN算法分类器的函数:
from numpy import *
import operator
#定义KNN算法分类器函数
#函数参数包括:(测试数据,训练数据,分类,k值)
def classify(inX,dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX,(dataSetSize,1))-dataSet
sqDiffMat=diffMat**2
sqDistances=sqDiffMat.sum(axis=1)
distances=sqDistances**0.5 #计算欧式距离
sortedDistIndicies=distances.argsort() #排序并返回index
#选择距离最近的k个值
classCount={}
for i in range(k):
voteIlabel=labels[sortedDistIndicies[i]]
#D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.
classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
#排序
sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]
在KNN.py中定义一个生成“训练样本集”的函数:
#定义一个生成“训练样本集”的函数,包含特征和分类信息在Python控制台先将当前目录设置为“KNN.py”所在的文件目录,将测试数据[0,0]进行KNN算法分类测试,输入:
import KNN
#生成训练样本
group,labels=KNN.createDataSet()
#对测试数据[0,0]进行KNN算法分类测试
KNN.classify([0,0],group,labels,3)
Out[3]: 'B'
可以看到该分类器函数将[0,0]分类为B组,符合实际情况,分入了符合逻辑的正确的类别。但如何知道KNN分类的正确性呢?
2.kNN算法用于约会网站配对
2.1准备数据
该数据在文本文件datingTestSet2.txt中,该数据具有1000行,4列,分别是特征数据(每年获得的飞行常客里程数,玩视频游戏所耗时间百分比,每周消费的冰淇淋公升数),和目标变量/分类数据(是否喜欢(1表示不喜欢,2表示魅力一般,3表示极具魅力)),部分数据展示如下:
完整地数据下载地址如下:
约会网站测试数据
(1)将文本记录转为成numpy
在python控制台输入:
in [5]:datingDataMat,datingLabels=KNN.file2matrix('G:\Workspaces\MachineLearning\machinelearninginaction\Ch02\datingTestSet2.txt')#括号是文件路径
(2)可视化分析数据
运用Matplotlib创建散点图来分析数据:
import matplotlib
import matplotlib.pyplot as plt
#对第二列和第三列数据进行分析:
fig=plt.figure()
ax=fig.add_subplot(111)
ax.scatter(datingDataMat[:,1],datingDataMat[:,2],c=datingLabels)
plt.xlabel('Percentage of Time Spent Playing Video Games')
plt.ylabel('Liters of Ice Cream Consumed Per Week')
#对第一列和第二列进行分析:
fig=plt.figure()
ax=fig.add_subplot(111)
ax.scatter(datingDataMat[:,0],datingDataMat[:,1],c=datingLabels)
plt.xlabel('Miles of plane Per year')
plt.ylabel('Percentage of Time Spent Playing Video Games')
ax.legend(loc='best')

(3)数据归一化
由于不同的数据在大小上差别较大,在计算欧式距离,整体较大的数据明细所占的比重更高,因此需要对数据进行归一化处理。
在Python控制台输入:
reload(KNN)数据的准备工作完成,下一步对算法进行测试。
2.2 算法测试
kNN算法分类的结果的效果,可以使用正确率/错误率来衡量,错误率为0,则表示分类很完美,如果错误率为1,表示分类完全错误。我们使用1000条数据中的90%作为训练样本集,其中的10%来测试错误率。
#定义测试算法的函数在控制台输入命令来测试错误率:
reload(KNN)
Out[150]: <module 'KNN' from 'G:\\Workspaces\\MachineLearning\\KNN.py'>
KNN.datingClassTest()
the classifier came back with: 3,the real answer is: 3
the classifier came back with: 2,the real answer is: 2
the classifier came back with: 1,the real answer is: 1
... ...
the classifier came back with: 2,the real answer is: 2
the classifier came back with: 1,the real answer is: 1
the classifier came back with: 3,the real answer is: 1
the total error rate is : 0.050000
可以看到KNN算法分类器处理约会数据的错误率是5%,具有较高额正确率。
可以在datingClassTest函数中传入参数h来改变测试数据比例,来看修改后Ration后错误率有什么样的变化。
KNN.datingClassTest(0.2)
the classifier came back with: 3,the real answer is: 3
the classifier came back with: 2,the real answer is: 2
the classifier came back with: 1,the real answer is: 1
... ...
the classifier came back with: 2,the real answer is: 2
the classifier came back with: 3,the real answer is: 3
the classifier came back with: 2,the real answer is: 2
the total error rate is : 0.080000
减小训练样本集数据,增加测试数据,错误率增加到8%。
2.3 使用KNN算法进行预测
def classifypersion():测试一下:
reload(KNN)
Out[153]: <module 'KNN' from 'G:\\Workspaces\\MachineLearning\\KNN.py'>
KNN.classifypersion()
percentage of time spent playing video games?10
frequent flier miles earned per year?10000
liters of ice creamconsued per year?0.5
You will probably like this persion :not at all
3. KNN算法用于手写识别系统
已经将图片转化为32*32 的文本格式,文本格式如下:
00000000000111110000000000000000
00000000001111111000000000000000
00000000011111111100000000000000
00000000111111111110000000000000
00000001111111111111000000000000
00000011111110111111100000000000
00000011111100011111110000000000
00000011111100001111110000000000
00000111111100000111111000000000
00000111111100000011111000000000
00000011111100000001111110000000
00000111111100000000111111000000
00000111111000000000011111000000
00000111111000000000011111100000
00000111111000000000011111100000
00000111111000000000001111100000
00000111111000000000001111100000
00000111111000000000001111100000
00000111111000000000001111100000
00000111111000000000001111100000
00000011111000000000001111100000
00000011111100000000011111100000
00000011111100000000111111000000
00000001111110000000111111100000
00000000111110000001111111000000
00000000111110000011111110000000
00000000111111000111111100000000
00000000111111111111111000000000
00000000111111111111110000000000
00000000011111111111100000000000
00000000001111111111000000000000
00000000000111111110000000000000
3.1数据准备
(1)将32*32的文本格式转为成1*2014的向量
在控制台中输入命令测试下函数:
reload(KNN)
3.2 算法测试
使用kNN算法测试手写数字识别
#引入os模块的listdir函数,列出给定目录的文件名
from os impor listdir
def handwritingClassTest():
hwLabels=[]
trainingFileList=listdir('G:/Workspaces/MachineLearning/machinelearninginaction/Ch02/trainingDigits')#列出文件名
m=len(trainingFileList) #文件数目
trainMat=zeros((m,1024))
#从文件名中解析分类信息,如0_13.txt
for i in range(m):
fileNameStr=trainingFileList[i]
fileStr=fileNameStr.split('.')[0]
classNumber=int(fileStr.split('_')[0])
hwLabels.append(classNumber)
trainMat[i]=img2vector('G:/Workspaces/MachineLearning/machinelearninginaction/Ch02/trainingDigits/%s'%fileNameStr)
testFileList=listdir('G:/Workspaces/MachineLearning/machinelearninginaction/Ch02/testDigits')
errorCount=0
#同上,解析测试数据的分类信息
mTest=len(testFileList)
for i in range(mTest):
fileNameStr=testFileList[i]
fileStr=fileNameStr.split('.')[0]
classNumber=int(fileStr.split('_')[0])
vectorUnderTest=img2vector('G:/Workspaces/MachineLearning/machinelearninginaction/Ch02/testDigits/%s'%fileNameStr)
classifierResult=classify(vectorUnderTest,trainMat,hwLabels,3)
print('the classifier came back with :%d,the real answer is:%d'%(classifierResult,classNumber))
if(classifierResult!=classNumber):errorCount+=1
print('\n the total number of errors is: %d'%errorCount)
print('\n total error rate is %f'%(errorCount/float(mTest)))
接下来在Python控制台输入命令来测试手写数字识别:
reload(KNN)
KNN.handwritingClassTest()
the classifier came back with :0,the real answer is:0
the classifier came back with :0,the real answer is:0
the classifier came back with :0,the real answer is:0
... ...
the classifier came back with :9,the real answer is:9
the classifier came back with :9,the real answer is:9
the classifier came back with :9,the real answer is:9
the total number of errors is: 10
total error rate is 0.010571
错误利率1.057%,具有较高的准确率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27