京公网安备 11010802034615号
经营许可证编号:京B2-20210330
论大数据对于人工智能发展的重要性
从软件时代到互联网,再到如今的大数据时代,数据的量和复杂性都经历了从量到质的改变,可以说大数据引领人工智能发展进入重要战略窗口。
从发展意义来看,人工智能的核心在于数据支持。首先,大数据技术的发展打造坚实的素材基础。大数据具有体量大、多样性、价值密度低、速度快等特点。大数据技术能够通过数据采集、预处理、存储及管理、分析及挖掘等方式,从各种各样类型的海量数据中,快速获得有价值信息,为深度学习等人工智能算法提供坚实的素材基础。人工智能的发展也需要学习大量的知识和经验,而这些知识和经验就是数据,人工智能需要有大数据支撑,反过来人工智能技术也同样促进了大数据技术的进步,两者相辅相成,任何一方技术的突破都会促进另外一方的发展。
其次,人工智能创新应用的发展更离不开公共数据的开放和共享。从国际上看,开发、开放和共享政府数据已经成为普遍潮流,英美等发达国家已经在公共数据驱动人工智能方面取得一定成效。而我国当前仍缺乏国家层面的整体战略设计与部署,政府数据开放仍处于起步阶段。在开放政府数据成为全球政府共识的背景下,我国应顺应历史发展潮流,抓住大数据背景下发展人工智能这一珍贵历史机遇,加快数据开发、开放和共享步伐,提升国家经济与社会竞争力。
从发展现状来看,人工智能技术取得突飞猛进的进展得益于良好的大数据基础。首先,海量数据为训练人工智能提供了原材料。据We Are Social公司统计,全球独立移动设备用户渗透率超过了总人口的65%,活跃互联网用户突破了40亿人,接入互联网的活跃移动设备超过了50亿台。根据IDC预测,2020年,全球将总共拥有35ZB的数据量。如此海量的数据给机器学习带来了充足的训练素材,打造了坚实的数据基础。移动互联网和物联网的爆发式发展为人工智能的发展提供了大量学习样本和数据支撑。
其次,互联网企业依托大数据成为人工智能的排头兵。Facebook近五年里积累了超过12亿全球用户;IBM服务的很多客户拥有PB级的数据;Google的20亿行代码都存放在代码资源库中,提供给全部2.5万名Google工程师调用;亚马逊AWS为全球190个国家/地区超过百万家企业、政府以及创业公司和组织提供支持。在中国,百度、阿里巴巴、腾讯分别通过搜索、产业链、用户掌握着数据流量入口,体系和工具日趋成熟。
再者,公共服务数据成为各国政府关注的焦点。美国联邦政府已在Data.gov数据平台开放多个领域13万个数据集的数据。这些领域包括农业、商业、气候、教育、能源、金融、卫生、科研等多个主题。英国、加拿大、新西兰等国都建立了政府数据开放平台。在我国,2011年香港特区政府上线data.gov.hk,上海率先在内地推出首个数据开放平台。之后,北京、武汉、无锡、佛山、南京等城市也都陆续上线数据平台。
另外,基于产业数据协同的人工智能应用层出不穷。海尔借助拥有上亿用户数据的SCRM大数据平台,建立了需求预测和用户活跃度等数据模型,年转化的销售额达到60亿元;益海鑫星、有理数科技和阿里云数加平台合作,以中国海洋局的遥感卫星数据和全球船舶定位画像数据为基础,打造围绕海洋的数据服务平台,服务于渔业、远洋贸易、交通运输、金融保险、石油天然气、滨海旅游、环境保护等众多行业,从智能指导远洋捕捞到智能预测船舶在港时间,场景丰富。
综上所述,大数据为人工智能的发展提供了必要条件。现阶段,在大数据角度,制约我国人工智能发展的关键在于缺乏高质量大数据应用基础设施、公共数据开放共享程度不够、社会参与数据增值开发进展缓慢、标准缺乏时效性等。
因此,需要从以下几个方面重点考虑:
一是重点突破面向大数据应用基础设施。结合数据生命周期管理需求,培育大数据采集与集成、大数据分析与挖掘、大数据交互感知、基于语义理解的数据资源管理等平台产品。面向重点行业应用需求,形成垂直领域的大数据解决方案及服务。
二是积极开展公共数据开发共享。国家要制定数据开放共享重大方针政策,加强统筹协调和分类指导。各地方要积极探索数据开放共享管理的新模式。鼓励有条件的地方探索建立数据开放共享管理部门,加强数据开放共享全过程的管理。
三是鼓励社会力量参与数据再利用增值开发。建立数据社会化增值开放共享绩效评价制度,将数据社会化增值开放共享绩效评价列入电子政务效益评估的总体框架之中。设计可度量的指标,评估数据社会化增值开放共享的数量、质量、收费的合理性以及申请者的满意度。
四是增强标准时效性。通过国家标准规定,要适应于移动应用的时代需求,提供相应的API,并规定API的基本格式,这样既能方便数据提供方进行API的开发,也大大降低了第三方软件开发者的开发复杂度,提高代码的重用率从而降低开发成本。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22