
电力大数据对智能电网发展的重要性
近年来,大数据来势汹汹,对传统数据商业分析模式产生了重大地影响,对电力企业的数据驾驭能力提出了新的挑战与机遇。借助大数据技术,对电力产业的数据信息进行获取、处理、分析及应用,必将激活电力大数据中蕴含的价值,挖掘电力大数据市场的潜力。
1.升级运营管理水平
电力系统是实现电能生产、传输、分配和消费瞬时平衡的复杂大系统,智能电网更需进一步实现各类新能源、分布式能源、各种储能系统、电动汽车和用户侧系统的接入,并借助信息通信系统对其进行集成,实施高效的管理和运行。借助大数据技术,可对电网运行的实时数据和历史数据进行深层挖掘分析,掌握电网的发展和运行规律,优化电网规划,实现对电网运行状态的全局掌控和对系统资源的优化控制,提高电网的经济性、安全性和可靠性。
基于天气数据、环境数据、输变电设备监控数据,可实现动态定容、提高输电线路利用率,提升输变电设备运检效率与运维管理水平;基于调度数据、仿真计算历史等数据,可以分析电网安全稳定性的时空关联特性,建立电网知识库,在电网出现扰动后,快速预测电网的运行稳定性,并及时采取措施,可有效提高电网的安全稳定性。
2.打造智慧节能产品
电力行业既是优质清洁能源的创造者,又是一次能源消耗大户,因而也是国家实施节能减排的重点领域。结合能源大数据、信息通讯与工业制造技术,通过对能源供给、消费、移动终端等不同数据源的数据进行综合分析,设计开发出节能环保产品,为用户提供付费低、能效高的能源使用与生活方式。
以智能家居产品为例,智能家居产品不仅可为居民用户提供节能降费的服务,也可对能源企业尤其是电力企业改善用户侧需求管理、减少发电装机等方面发挥作用。现实中,电网企业不一定必须具备产品研发优势,可利用电力数据采集与分析方面的优势,或通过与设备制造商合作改进用户需求侧管理,或通过共同参与研发在产品销售中获取收益。
3.改善用户用电体验
用户端的数据是一个待挖掘的金矿。大数据将各行业的用户、供电服务、发电商、设备厂商融入到一个大环境中,促成了电网企业对用户的需求感知,依据数据的分析来进行运行调度、资源配置决策,并基于分析来匹配服务需求。用户扮演的角色越来越重要,不仅可对内实现能源的生产和消费管理,实现能源交易,还将对外参与需求响应或作为虚拟电站参与调度运行。促进用户与电网的互动是提高大电网灵活性、进而提高其接纳大规模间歇性新能源的有效途径。了解用户用能特性,制定有效的政策和市场机制,是有效激励用户改善能效、参与需求响应、需求调度的途径。
根据用户用能情况、用户分布式发电、储能系统和电动汽车的应用情况,结合用户特征数据和社会环境数据,可分析预测用户的能源生产和消费特征,为电网规划和运行方式安排提供参考,实现与用户的高效互动,提高用户侧能效水平,改善用户用电体验,提高用户满意度。
4.提供政府决策支持
电网作为载体承载着能源与用能两大主体,它关联着诸多因素。今天的能源政策与机制应超出基于因果关系和条件评估的判断,需要以数据为基础、关联分析为依据的决策。如:电价特别是阶梯电价定位,基于综合用能行为数据和生产、生活各因素以及电力生产成本等多因素进行数据分析,才能有效地激活各个要素,实现最佳效果。再如新能源、分布式能源、电动汽车、需求响应等技术的大规模实施,不仅取决于技术成熟度和经济性,还取决于能源政策和各种激励机制是否有效。能源政策和机制是否有效,通常并没有普适性,而是应符合本国的实际、符合精准的感知和预测。
此外,电力与经济发展、社会稳定和群众生活密切相关,电力需求变化能够真实、客观地反映国民经济的发展状况与态势。通过分析用户用电数据和新能源发电数据等信息,电网企业可为政府了解全社会各行业发展状况、产业结构布局、预测经济发展走势提供数据支撑,为相关部门在城市规划建设、推广新能源和电动汽车、促进智慧城市发展等方面提供辅助决策。
5.助力未来电网发展
国家电网公司站在全球能源发展高度,提出了全球能源互联网发展蓝图,以最大化地开发利用新能源,实现能源资源在全球范围的优化配置。未来电网具有长距离、广范围、泛在智能和共享互联的特点,将发生电网运行机制与商业模式的重构。在庞大而广泛的未来电网中,将呈现电源多样性、遍布性、时移性,负荷移动性、互动性,用能终端大量信息接入,各类管理终端大量介入,要求电网具有柔性和自适应能力,以满足送受端的时空变异和方式的多重复杂。在这种情况下,依靠传统的状态信号指令无法完成决策,需要复杂的负荷预测、分析及实时呈现,需要以大量的、多维的、高密度的数据来支撑预测、预警、机器决策和人工判断。
在智能电网向更高阶段发展过程中,地域更加广泛,需基于全球数据实现能源电力大范围平衡来保障电网及其他系统的安全,这也是大数据对电网发展与未来电网目标实现路径的支撑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10