R语言基础画图/绘图/作图
R语言基础画图
R语言免费且开源,其强大和自由的画图功能,深受广大学生和可视化工作人员喜爱,这篇文章对如何使用R语言作基本的图形,如直方图,点图,饼状图以及箱线图进行简单介绍。
0 结构
每种图形构成一个section,每个部分大致三部分构成,分别是R语言标准画图代码,R语言画图实例,和画图结果。
R语言标准画图代码帮助你可以直接使用:help(funciton)查找,实例数据基本都来自内置包的数据,好了,直接切入主图,从最简单的点图开始吧。
1 点图
点图,简单的讲就是每个数据点按照其对应的横纵坐标位置对应在坐标系中的图形,什么是点图就不做过多介绍了。
点图标准代码:
dotchart(x, labels = NULL, groups = NULL, gdata = NULL,
cex = par("cex"), pt.cex = cex,
pch = 21, gpch = 21, bg = par("bg"),
color = par("fg"), gcolor = par("fg"), lcolor = "gray",
xlim = range(x[is.finite(x)]),
main = NULL, xlab = NULL, ylab = NULL, ...)
x是数据来源,也就是要作图的数据;labels 是数据标签,groups分组或分类方式,gdata分组的值,cex字体大小,pch是作图线条类型,bg背景,color颜色,xlim横坐标范围,main是图形标题,xlab横坐标标签,相应的ylab是纵坐标。
-实例
eg1.1:
dotchart(mtcars$mpg,labels = row.names(mtcars),cex = .7,
main = "Gas Mileage for Car Models",
xlab = "Miles Per gallon")
mtcar是内置包中的一个数据,将mtcar中每加仑油的里程(mpg,miles per
gallon)作为要描述的对象,用点图展现出来,将行名作为点图标签,字体大小是正常大小的0.7,标题“Gas Mileage for Car
Models”,x轴标签”Miles Per gallon”。
运行结果(run 或者Ctrl + Enter快捷键)如图所示:
散点图1.1
eg1.2:
现在觉得这个图太散乱了,希望这个图能够经过排序,想要按照油缸数(cyl)进行分组并且用不同的颜显示。(注:#是R语言中的行注释,并且只有行注释,运行时系统会自动跳过#后面的内容)
x <- mtcars[order(mtcars$mpg),] #按照mpg排序
x$cyl <-factor(x$cyl) #将cyl变成因子数据结构类型
x$color[x$cyl==4] <-"red" #新建一个color变量,油缸数cyl不同,颜色不同
x$color[x$cyl==6] <-"blue"
x$color[x$cyl==8] <-"darkgreen"
dotchart(x$mpg, #数据对象
labels = row.names(x), #标签
cex = .7,#字体大小
groups = x$cyl, #按照cyl分组
gcolor = "black", #分组颜色
color = x$color, #数据点颜色
pch = 19,#点类型
main = "Gas Mileage for car modes \n grouped by cylinder", #标题
xlab = "miles per gallon") #x轴标签
run后结果如下:
散点图1.2
是不是好看多了,嘻嘻!按照油缸数不同进行了分类,并且可以看出油缸数量越多越耗油。
2 直方图
2.1 直方图
小学生都知道的条形图,怎么弄?
条形图标准代码:
barplot(height, ...)
是太简单了吗?这么粗暴,就给了一个变量。
实例
eg2.1.1
library(vcd)
counts <- table(Arthritis$Improved) #引入vcd包只是想要Arthritis中的数据
barplot(counts,main = "bar plot",xlab = "improved",ylab = "counts")
结果2.1.1:
条形图2.1.1
barplot(counts,main = " horizontal bar plot",
xlab = "frequency",
ylab = "improved",
horiz = TRUE)#horizon 值默认是FALSE,为TRUE的时候表示图形变为水平的
图形结果:
条形图2.1.2
eg2.1.3 进阶
数据来源:vcd包中的Arthritis,风湿性关节炎研究结果数据,如果没有安装vcd包,需要先安装,install.packages("vcd"),然后用library引用包vcd,
install.packages("vcd")
library(vcd)
counts <- table(Arthritis$Improved,Arthritis$Treatment)
counts
数据如下所示:
代码:
eg 2.1.3.1
barplot(counts,main = " stacked bar plot",xlab = "treated",ylab = "frequency",
col = c("red","yellow","green"), #设置颜色
legend = rownames(counts)) #设置图例
结果2.1.3.1:
2.1.3.1堆砌条形图
代码
eg2.1.3.2
结果2.1.3.2
分组条形图2.1.3.2
请注意,两幅图的区别在于2.1.3.2设置了beside = TRUE,beside默认值是FALSE,绘图结果是堆砌条形图,beside值为TRUE时,结果是分组条形图。
2.2**荆棘图**
荆棘图是对堆砌条形图的扩展,每个条形图高度都是1,因此高度就表示其比例。
- 实例
代码
library(vcd)
attach(Arthritis)
counts <- table (Treatment,Improved)
spine(counts,main = "Spinogram Example")
detach(Arthritis)
结果:
荆棘图2.2
3 直方图
直方图标准代码:
hist(x, ...)
也是简单地可以哈?
- 实例
我们使用par设置图形参数,用mfrow将四幅图放在一起。
代码
eg3.1:
par (mfrow = c(2,2)) #设置四幅图片一起显示
hist(mtcars$mpg) #基本直方图
hist(mtcars$mpg,
breaks = 12, #指定组数
col= "red", #指定颜色
xlab = "Miles per Gallon",
main = "colored histogram with 12 bins")
hist(mtcars$mpg,
freq = FALSE, #表示不按照频数绘图
breaks = 12,
col = "red",
xlab = "Miles per Gallon",
main = "Histogram,rug plot,density curve")
rug(jitter(mtcars$mpg)) #添加轴须图
lines(density(mtcars$mpg),col= "blue",lwd=2) #添加密度曲线
x <-mtcars$mpg
h <-hist(x,breaks = 12,
col = "red",
xlab = "Miles per Gallon",
main = "Histogram with normal and box")
xfit <- seq(min(x),max(x),length=40)
yfit <-dnorm(xfit,mean = mean(x),sd=sd(x))
yfit <- yfit *diff(h$mids[1:2])*length(x)
lines(xfit,yfit,col="blue",lwd=2) #添加正太分布密度曲线
box() #添加方框
结果:
直方图3.1
4 饼图
标准饼图代码:
pie(x, labels = names(x), edges = 200, radius = 0.8,
clockwise = FALSE, init.angle = if(clockwise) 90 else 0,
density = NULL, angle = 45, col = NULL, border = NULL,
lty = NULL, main = NULL, ...)
实例
eg4.1
par(mfrow = c(2,2))
slices <- c(10,12,4,16,8) #数据
lbls <- c("US","UK","Australis","Germany","France") #标签数据
pie(slices,lbls) #基本饼图
pct <- round(slices/sum(slices)*100) #数据比例
lbls2 <- paste(lbls," ",pct ,"%",sep = "")
pie(slices,labels = lbls2,col = rainbow(length(lbls2)), #rainbow是一个彩虹色调色板
main = "Pie Chart with Percentages")
library(plotrix)
pie3D(slices,labels=lbls,explode=0.1,main="3D pie chart") #三维饼图
mytable <- table (state.region)
lbls3 <- paste(names(mytable),"\n",mytable,sep = "")
pie(mytable,labels = lbls3,
main = "pie chart from a table \n (with sample sizes")
结果:
4.1 饼状图
5 箱线图5.1 箱线图
标准箱线图代码:
boxplot(x, ...)
实例
eg5.1boxplot(mtcars$mpg,main="Box plot",ylab ="Miles per Gallon") #标准箱线图
boxplot(mpg ~ cyl,data= mtcars,
main="car milesge data",
xlab= "Number of cylinders",
ylab= "Miles per Gallon")
boxplot(mpg ~ cyl,data= mtcars,
notch=TRUE, #含有凹槽的箱线图
varwidth = TRUE, #宽度和样本大小成正比
col= "red",
main="car milesge data",
xlab= "Number of cylinders",
ylab= "Miles per Gallon")
mtcars$cyl.f<- factor(mtcars$cyl, #转换成因子结构
levels= c(4,6,8),
labels = c("4","6","8"))
mtcars$am.f <- factor(mtcars$am,levels = c(0,1),
labels = c("auto","standard"))
boxplot(mpg~ am.f*cyl.f, #分组的箱线图
data = mtcars,
varwidth=TRUE,
col= c("gold","darkgreen"),
main= "MPG Distribution by Auto Type",
xlab="Auto Type",
ylxb="Miles per Gallon")
结果:
5.1 箱线图
小提琴图是箱线图和密度图的结合。使用vioplot包中的vioplot函数进行绘图。
小提琴图标准代码:
vioplot( x, ..., range=1.5, h, ylim, names, horizontal=FALSE,
col="magenta", border="black", lty=1, lwd=1, rectCol="black",
colMed="white", pchMed=19, at, add=FALSE, wex=1,
drawRect=TRUE)
实例
代码:
eg5.2
library(vioplot)
x1 <- mtcars$mpg[mtcars$cyl==4]
x2 <- mtcars$mpg[mtcars$cyl==6]
x3 <- mtcars$mpg[mtcars$cyl==8]
vioplot(x1,x2,x3,names= c("4 cyl","6 cyl","8 cyl"),col = "gold")
title(main="Violin plots of Miles Per Gallon",xlab = "number of cylinders",ylab = "Miles per gallon")
结果:
5.2 小提琴图
白点是中位数,中间细线表示须,粗线对应上下四分位点,外部形状是其分布核密度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03