京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言与抽样技术学习笔记(Jackknife)
R语言与抽样技术学习笔记(Randomize,Jackknife,bootstrap)
Jackknife算法
Jackknife的想法在我很早的一篇博客《R语言与点估计学习笔记(刀切法与最小二乘估计)》就提到过。其思想以一言蔽之就是:将样本视为总体,在“总体”中不放回地抽取一些“样本”来做统计分析。今天我们来讨论Jackknife应该怎么做以及为什么要这么做。
Jackknife的算法描述
Jackknife方法利用系统的划分数据集的办法来推测总体样本估计量的一些性质。Quenouille建议用它来估计偏差,随后John Tukey证实它用来估计估计量的方差也是极好的。
假设我们有随机样本X1,⋯,Xn,并从中计算统计量T去估计总体的参数μ。在Jackknife方法下,我们将给定数据集划分为r组,每组数据量为k。
现在,我们移除样本中第jth组数据,并用剩下的数据来估计参数μ,并将估计量记为T(−j)。T(−j)的均值T¯¯¯(⋅)可以用来估计参数μ,T(−j)也可以用来获取估计量T更多的信息,但是必须要指出的是Jackknife不会提供比总体样本更多的信息(任何抽样技术都是不会的!!!);当T是无偏估计时,T(−j)也是,T是有偏的估计量时,T(−j)也是,但是会有一点点的不同。
我们有时也对T与T(−j)的不同进行加权处理,得到新的统计量:

这就是许多文献中提到的Jackknife“伪值”,并将这些伪值的均值称为“Jackknifed”T,记为T(J)。显然
通常情况下,我们取k=1,r=n。在某些特定条件下,它是最优的。
现在我们来考虑一下Jackknife对估计量偏差与方差的估计。我们这里采用伪值来考虑问题,认为伪值的偏差就是估计量的偏差,伪值的方差就是估计量的方差。那么我们有

我们不妨取r=n,k=1,T对μ的估计的偏差肯定是
,忽略高阶量,那么偏差的近似估计量为:

虽然这些伪值不是独立的,但是,我们仍不妨假设他们是独立的,因为这样我们利用伪值估计估计量的方差变得十分简单:

我们以正态总体为例来考虑这个问题。
data.sim <- rnorm(30, 5, 3)
(mu.hat <- mean(data.sim))
## [1] 4.339
[plain] view plain copy
print?
n <- length(data.sim)
mu.jack <- NULL
for (i in 1:n) {
mu.jack[i] <- mean(data.sim[-i])
}
(jack.estimate <- mean(mu.jack))
## [1] 4.339
可以看到,矩估计的估计值为4.3393,Jackknife估计为4.3393,较真值5而言,估计效果还是可以的。我们还可以计算偏差:
(bias <- (n - 1) * (mean(mu.jack) - mu.hat))
## [1] 0
可以看到,这是一个无偏估计,不是吗?
当然,要估计我们采取的估计量的方差也是可以的:
var <- mean((mu.jack - mean(mu.jack))^2) * (n - 1)
print(var)
## [1] 0.4612
可以看到估计量的方差为0.4612与正态总体均值的标准差的理论值0.3相差不大。
Jackknife与偏差纠正
我们这里将要说明Jackknife最大的作用——纠正偏差。
我们都知道,我们对参数估计最常用的办法就是矩估计与极大似然估计。然而这两种估计不一定是无偏的。例如[0,θ]上的均匀分布U(θ)的参数θ的极大似然估计就不是无偏的,在比如正态分布N(μ,σ)中标准差的似然估计也不是无偏的。这些很容易证明,当然,你也可以查阅王兆军的《数理统计讲义》,上面给出了详细的说明。 当然这些偏差我们都可以通过对估计量做一些变换得到无偏估计量,但是这些常数还是不太容易通过普适的办法得到,而大偏差估计往往被视为估计的不足,得到一种在不增加方差的基础上,纠正偏差的办法是很好的,这就是我们现在讨论的Jackknife。
设T(X)是基于样本X的参数g(θ)的估计量,且满足
,Jackknife偏差修正估计量为
,Jackknife统计量具有如下性质:

证明十分的简单,注意到J(T)的表达式,利用定义即可证明。(上一小节我们也间接地证明过了这一事实)
我们最后来看一个例子:我们知道均匀分布U(θ)的参数θ的极大似然估计是渐进无偏而非真正无偏的,我们假设样本为x1,⋯,xn,θ的极大似然估计是x(n)(即样本中的最大值),我们知道
,所以似然估计的偏差是
,我们使用Jackknife看看能不能缩减方差:
data.sim <- runif(100, 0, 7)
theta.hat <- max(data.sim)
theta.jack <- NULL
for (i in 1:length(data.sim)) {
theta.jack[i] <- max(data.sim[-i])
}
n <- length(data.sim)
theta.jackestimate <- n * theta.hat - (n - 1) * mean(theta.jack)
cat("original bias is ", 7 - theta.hat, "after jackknife the bias is ", 7 -
theta.jackestimate)
## original bias is 0.002576 after jackknife the bias is -0.1084
我们从上面的运行结果可以清楚的看到Jackknife之后,偏差确实减少了。这也是符合我们的想法的,因为当k变大时,Jackknife估计更接近均值的两倍,即它更接近矩估计,而矩估计是无偏的。当然一味追求无偏是不对的,对于一个有偏估计,其偏差趋于0时,可能导致方差变得很大。
Jackknife失效
若估计量不够平滑,每次删掉一个数据的Jackknife就会失效,估计也不再具备相合性。
例如:利用Jackknife方法估计从1到100中随机抽出的10个数的中位数的标准差。
## M= 46 46 40 40 40 46 40 46 46 40
## [1] 9
我们可以看到这个估计量的标准差很不对的,因为每次缺省1个值,中位数也就至多会有两个取值,无论你的样本容量取值多大,这都是不对的。Enfro(1993)提出了delete K Jackknife算法解决这个问题。但是这个要求还是很高的,它要求n,k都比较大。那么好的估计方法应该是什么呢?这就要用到我们接下来将要介绍的bootstrap方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09