京公网安备 11010802034615号
经营许可证编号:京B2-20210330
【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com)
《用商业案例学R语言数据挖掘》 作者 常国珍 经管之家,电子工业出版社
教材相关资料下载:
链接:https://pan.baidu.com/s/1uUkuCh_AeO23AlMAHEXcYQ 密码:d4u8
本书前言
本书有别于其它数据挖掘书籍最大的特点在于参与写作的主要作者均为非理工科背景且具有数据挖掘岗位工作8年以上的实际工作经验,且从事3年以上的培训工作。这使得本书更贴近实际运用的同时,紧抓初学者的痛点,语言更浅显易懂,操作性更强。当然,这也使得本书在前沿方法的讲解上略显不足。因为一个算法要在商业数据挖掘中得到运用需要大致3-5年的时间。所以本书仅适合数据挖掘入门人员使用。而且本系列教材强调追求浅显易懂,只注重视运用中是否够用,不关心算法知识的全面性,因此在算法推导过程中降低了难度,不涉及非关键且不易理解的部分。当读者从事数据挖掘2-3年后,本书的知识就不能满足其更深的需求,需要参考更深入的书籍,比如更专业的《统计学习方法》、《机器学习》等。
本书按照数据挖掘工程师规范化学习体系而定,对于一名初学者,应该先掌握必要的编程工具、统计理论基础,数据挖掘算法等内容。进而,数据挖掘需要根据业务问题选择合适的方法,按照标准流程,即数据的获取、储存、整理、清洗、归约等系列数据处理技术,并最终得出结果,绘制图表并解读数据,这些内容在每版图书中进行了详细的讲解和操作分析。
本书整体风格是“理论>技术>应用”的一个学习过程,最终目的在于商业业务应用,为欲从事于数据挖掘领域的各界人士提供了一个规范化数据分析师的学习体系。
本书是一本面向商业数据分析初学者的教材,从具体的商业数据分析案例入手,使读者掌握数据挖掘的目的、理念、思路与分析步骤。本书力图淡化技术,对于方法的介绍也尽量避免涉及过多的数学内容,和高等数学相关的内容只在线形回归和主成分分析这两节中涉及到,而且都辅以图形作形象的展现。因此本书的读者只需要具有高中水平的数学基础即可。但是本书强调每种方法的假设、适用条件都与商业数据分析的主题匹配。在教学实践中,我们发现业务经验丰富和有较好商业模式理解的学员,在学习数据挖掘时有更好的效果,主要原因可能是这类学员有较强的思辨能力、分析能力、学习目的性和质量意识,而不是简单的模仿和套用数学公式。
当前R和Python等开源软件方兴未艾,但是这类软件学习曲线缓慢,使很多初学者的热情在进入数据分析的核心领域之前就消逝殆尽。商业数据分析的真正目的是为了解决业务的分析需求,构造稳健的数据挖掘模型。数据挖掘产品的质量是通过对分析流程的严格掌控而得以保障的。本书注重实用,直指数据挖掘实施的要点,精选业界使用最广泛的实施方案,为读者节约宝贵的时间。
相对于Python,R偏向于统计分析、计量经济学和统计内容。R不仅在学术研究中拥有广泛的用户基础,而且和Oracle、SQLsever等数据库软件的结合使其不再受内存的限制,从而在商业上有了一定的用武之地。而且R和Hadoop、Spark等大数据分析平台也可以自由连接。
本书包括16章,内容涉及使用R做数据挖掘的主要分析方法。其中,第1、2章为数据分析方法概述,第3章为R语言编程基础,第4章至第8章为统计学习方法,第9章至第15章为数据挖掘方法。第16章为时间序列分析方法。每章都根据涉及的知识点的不同,选取了实用的案例,并为读者准备了相应的思考和练习题。
为方便读者学习,本书提供书中案例的源文件下载,请读者进入CDA官网(http://cda.cn/)的相应专栏下载数据和源代码。
本书作为市场上第一本CDA数据挖掘教材,和其他统计软件图书有很大的不同,文体结构新颖,案例贴近实际,讲解深入透彻。这些特点主要表现在以下几方面:
本书从互联网、电商、电信、银行等商业案例中进行精心归纳、提炼出各类数据分析的运用场景,方便读者查找与实际工作相似的问题。
本书案例中的“解决方案”环节是对问题的思路解说,结合“操作方法”环节中的步骤让读者更容易理解。“原理分析”环节则主要解释所使用代码的工作原理或者详细解释思路。“知识扩展”环节是对与案例相关的知识点的补充,既能拓展读者的视野,同时也有利于理解案例本身的解决思路。
本书注重培养读者解决问题的思路,以最朴实的思维方式结合启发式的描述,帮助读者发现、总结和运用规律,从而启发读者快速地找出解决问题的方法。
俗话说,打把势全凭架势,像不像,三分样。只有熟悉数据挖掘的流程,才能实现从模仿到灵活运用的提升。在产品质量管理方面,对流程的掌控是成功的关键,在数据挖掘过程中,流程同样是重中之重。数据挖掘是一个先后衔接的过程,一个步骤的失误会带来完全错误的结果。一个数据挖掘的流程大致包括抽样、数据清洗、数据转换、建模和模型评估这几个步骤。如果抽样中的取数逻辑不正确,就有可能使因果关系倒置,因而得到完全相反的结论。如果数据转换方的法选择不正确,模型就难以得到预期的结果。而且,数据分析是一个反复试错的过程,每一步都要求有详细的记录和操作说明,否则数据挖掘人员很可能迷失方向。
学习数据挖掘最好的方法就是动手做一遍,本书语言通俗但高度凝炼,很少有公式,以避免读者产生麻痹大意的思想。本书按照相关商业数据分析主题提供了相应的练习数据,同时提供相关方面的参考资料,供学员学习。
本书读者可以在CDA官网(http://cda.cn/) 版块就书中的问题进行提问,也欢迎大家就自己遇到的业务问题和大家讨论。
本书由CDA数据分析研究院策划,常国珍、曾珂、朱江负责编写和完成统稿。
丛书从策划到出版,倾注了电子工业出版社计算机图书分社张慧敏、石倩、王静、张童等多位编辑的心血,特在此表示衷心的感谢!
为保证丛书的质量,使其更贴近读者,我们组织了著名学者和工作在数据挖掘一线的工程师参与了本书的预读工作,他们是李御玺教授、瞿辉工程师。感谢两位预读员的辛勤、耐心与细致,使得本丛书能以更加完善的面目与各位读者见面。
尽管作者们对书中的案例精益求精,但疏漏仍然在所难免,如果您发现书中的错误或认为某个案例有更好的解决方案,敬请登录社区网站向作者反馈,我们将尽快在社区中给出回复,且在本书再次印刷时作出修正。
再次感谢您的支持!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26