
数据分析技术:聚类分析;可怕的不是阶层固化,而是因此放弃了努力
划分类别、等级和阶层的行为自发或不自发的存在于社会生活的各个角落。例如,可以根据家庭年收入情况将所有家庭划分为低收入到高收入的不同阶层;根据人们的工作性质,也可以将人们划分不同阶层;根据出生地和生活习惯,同样可以对人群进行分类。对事物分门别类依据的是不同事物身上共同的标签。
分阶层、分等级、分类别从来都不是一个能够被简单定义好坏的行为。中华几千年的文明历史,从奴隶社会、封建社会,再跨越进入社会主义社会的初级阶段,没有那种社会形态只存在一种阶层,一种人群。在不同的阶层和人群间,也必然存在协作、欺压甚至剥削等不同的相处模式,这是由不同群体身上的标签决定的,这是分类残酷的一面。对于数据分析者和商业运营者来说,不同类别事物身上的特有标签是他们需要充分利用的信息,例如,年轻人喜欢闹腾消遣娱乐方式;女性消费者是化妆品的主要购买和使用者;老年社会的来临,意味着养老机构存在极大的需求缺口等等,这是分类信息带给商业运营者制定下一步发展策略的方向。
上面列举的例子都是通过一个指标、特征或标签就对所有的事物进行分类,这样的分类情况是非常简单和明确的。然而,如果分类需要考虑的标签是多个,事物在这些标签上的表现有好有坏,那么就需要用到聚类分析来达到我们的需求了。
聚类分析原理
在介绍聚类分析原理前,需要强调一个事实。同其它统计分析方法不同,聚类分析是一种探索性的分析方法,也就是说不用也没有办法对聚类分析的结果进行“是否正确”的检验,只能依据聚类结果在具体问题中的“有用性”来判断聚类效果的好坏,没有正确或错误之分。
聚类分析的实质就是按照事物之间距离的远近进行分类,其分析结果使同类别事物的距离(差异)尽可能小,不同类别的距离(差异)尽可能大。根据聚类分析的逻辑,以下几个问题是需要大家清楚理解的。
距离的定义
事物身上的指标数据(标签数据)类型可以分成两类:分类数据(定类或定序)以及连续型数据(定距和定比),这两类数据在聚类分析时,常用的距离测量方式是完全不同的,连续型数据一般使用欧氏平方距离,而分类数据使用的则是卡方相关性。对于连续型数据的欧式距离或欧式平方距离,可以用下面的公式表示,是非常好理解的:
基于不同数据类型,定义距离的方式不同,因此传统聚类方法只能使用单一种类的指标数据进行聚类分析,如果数据中同时含有两类数据,那么只能选取其中一种进行分析。令人高兴的是,随着聚类分析方法的发展,一些智能聚类方法已经可以很好的同时分析这两种变量,两步聚类就是最常用的只能聚类方法。
通过上面介绍的欧式距离公式,我们会发现一个很明显的缺陷,那就是不同指标数据的单位或数量级相差很大,那么数量级大的指标数据会对欧式距离产生更大的影响。例如,x的数量级如果是万,而y数量级仅为十,那么y变量对欧式距离结果的影响相对于x来说就显得微不足道了。解决这个缺陷最常用的办法就是数据标准化,使得不同数量级的数据回到同一起跑线。常用的标准化方式就是把数据转化成标准化分数,当然也可以根据实际情况将不同数量级的数据变换成同一个数量级进行比较。
聚类方法
聚类分析经过多年的发展,已经逐渐形成常用的三种聚类方法:层次聚类法、K-Mean聚类法和二阶聚类法。下面对这三种聚类方法的聚类逻辑进行介绍,后面会用三篇推送具体介绍它们的原理、SPSS软件实现和生活案例应用。
层次聚类法
层次聚类法是传统的聚类方法,它首先需要根据指标数据类型确定距离的基本定义和计算方式,随后按照距离的远近,将所有的事物(个案)一步一步的归成一类。这样聚类的结果显然存在嵌套,或者说不同类别间会有层次关系,因此被称为层次聚类法。层次聚类可用一张二维空间图来表示,称为树状图。
K-均值聚类
层次聚类的分析过程是非常细致的,需要计算所有事物(个案)两两之间的距离,所以聚类的效率不高。K-均值聚类可以在一定程度上解决这个问题。K-均值聚类在聚类之前就确定好了最终的类别数和类别坐标,整个分析过程使用迭代的方式进行。通过不断的迭代把事物(个案)在不同类别之间移动,直到找到距离最短的类别,然后将该事物归于此类。整个计算过程中不需要存储基本数据,因此不会出现嵌套结果,计算速度也非常快。
二阶聚类
随着数据收集和存储设备的发展,海量数据的聚类分析已经称为迫切的需求,而上面介绍的两种聚类方法在速度和效率上还不能满足要求。首先是面对海量数据,过高的计算量会使上面两种方法不具实用价值;其次上面两种聚类方法不能处理复杂指标数据同时存在的情况,特别是连续型和离散型数据混合出现的情况。二阶聚类能够解决上面两种聚类方法不能处理的复杂情况。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15