京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在体育产业里到底扮演了什么角色
随着共和国的经济和科技发展,大数据还没在美国爆发,先在咱们这片土地上炸了。
大数据像是一场夏日的小雨,一阵响雷后,悄悄地落在地面上,又悄悄地润进土壤。
去年开始有个响雷叫“体育大数据”,一批公司在这阵雷声里拿到了融资,那么他们现在都干嘛呢?
一年内比较受关注的一批体育大数据公司
大体上,体育大数据公司是围绕在社区、赛事数据、体育数据、媒体、博彩(彩票)、青训这几个领域上的。
这里诞生的最早的是2004年成立的搜达足球,但那个时候搜达足球只是一家简单的足球网站,直到2014年,乐视与搜达因为印度超级联赛的直播才有了接触,这时候已经有了细致、可调控的图表数据。2014年云技术爆发,使得大数据技术门槛降低,再后来,2016年,大数据的概念被资本家们拿出来搞事情(搞¥)。大公司们决定布局体育大数据,就有了乐视体育投资3920万控股搜达足球这码子事。
打这儿开始,2016年的体育大数据融资就算是开场了。
体育大数据是什么?体育大数据其实实际只存在了四种公司
体育大数据的数据维度除了比赛本身,也有场地、天气、时间、运动员身体情况的维度。
之前,大多数比赛的数据还是人工收集,直到一家名为ZebraTechnologies的公司试图记录更为全面,更为准备的现场数据。他们通过将RFID标签放在设备里,球上,或是运动员的身上,来跟踪收集其运动方向,距离,速度等数据。另一家叫SportVU的,在每一个NBA球馆都放了6个摄像头,以每秒25次的速度来收集每一名球员和篮球的每一次移动。
这些数据被收集起来,给教练、运动员、经纪人、赛事工作人员,来帮助运动员员得分,合同谈判,或是避免伤病。
在2014年的麻省理工斯隆体育分析大会(MITSloanSportsAnalyticsConference)上,教练们与球员们在一起,分析了大数据的潜力,与它对于现代体育的8个影响。
其中包括:
1更加精确的赛场判罚
2球迷可以看到更多的进阶数据
3通过可穿戴设备经行数据的收集与分析
4现场数据的收集
5预测球迷动向
6为体育迷提供了新的就业方向
7影响教练的决定
8建立参数,帮助合同谈判
当然,实际操作上,大体上只有4种公司:
1体育博彩数据公司
2关注竞技体育,主要是赛事方面的大数据公司
3针对青少年培训和职业运动员培训的数据公司
4针对体育爱好者的数据公司
B端的公司先行一步已经盈利了
魔方元官网旗舰产品展示了三个产品,提供解决方案;足球魔方应用;梦幻足球经理模拟游戏。实际上魔方元做了四件事,为体育用品做BI辅助决策、为体育媒体提供内容;为俱乐部做青训数据支持;卖足彩。据说已经盈利了。
这也揭示了体育大数据服务的四大目标群体:职业球队、体育媒体、广大球迷、足彩彩民。
明眼人都看得出,四个目标群体里,三个都是大B端。
C端的公司主要是面向普通球迷提供搜索和社区的服务,但收费仍然是向专业用户提供数据分析服务。老实讲,体育大数据对C端个人用户的意义暂时还没有发掘出来。所以针对C端用户的商业模式还是靠卖体彩,但其实卖体彩服务的仍然是B端的博彩公司。
所谓体育大数据的概念,整体上还有些模糊,现阶段与其说是体育大数据,不如说是体育分析,可能更为妥帖。体育数据的相关性与隐形趋势对个人而言,并无太大影响与指导意义。与其关心运动员的身体状况和战术信息不如说他们更关心的是运动员本身的魅力,毕竟虽然冠军的关注度高,但并非只有冠军才有人关注,即便天才如马拉多纳也一样会有人不喜欢。
目前体育产业发达的欧美顶尖数据服务商的通用商业模式是:
1从赛事版权方拿到数据开发的代理权
2对比赛和球员进行数据采集
3对数据进行建模和加工
4再通过产品化打包分发给B端用户
越来越多的体育数据公司还会加入战团,这其中包括收购了OPTA的Perform,以及为中超提供服务的法国数据公司艾米斯科,这些海外公司的指爪其实近在咫尺。但看过了国外的案例后,也有了新问题,Sportradar最大的客户是博彩公司BET365,那么谁能拿下中国体彩中心呢?
体育大数据到底在体育产业里扮演什么样的角色?
“大数据统计对体育赛事的运用是多维度的,获得奥斯卡提名奖的《点球成金》就充分诠释了‘棒球统计学’这一名词。”——创冰科技CEO刘震
事实上,诸如Amisco、OPTA、SAP以及Prozone这样的数据公司,已经成为职业足球界必不可少的细分环节。数据行业之于全球体育领域的重要性,正在不断提升。
Prozone已经为全世界的300多家足球俱乐部提供数据,包括英超联赛的所有球队。员工只有几十人的OPTA(已经被Performs收购),德国的SAP公司,不仅成为拜仁慕尼黑的官方合作伙伴,甚至在德国国家队夺取世界杯的过程中,也起到了至关重要的作用。
据我们从网络搜集来的数据显示:全球大数据市场规模从2010年的32亿美元,增长到2015年的170亿美元,年增长率达40%,其中中国2015年大数据市场规模达115.9亿元,预计2017年可以迅速发展到170亿元的市场规模。
但与市场规模光鲜的数字不同的是,由于国内职业体育赛事成熟度的不同,国内B端市场的赛事数据服务需求远远不及国际市场的需求度。但根据国家大力发展青少年足球的政策来看,长期的讲这些可能在未来都不会是太大的问题,短期的讲,足球青训是现下市场的重要缺口。
现在国际赛事数据服务机构例如StatsLLC、PerformGroup和Sportradar更倾向于通过并购手段来丰富技术手段、产品内容和销售渠道,以此来提升B端服务能力。
但乐观的看国内体育大数据发展,据创冰科技方面称,与其合作的广州恒大淘宝、延边富德以及河北华夏幸福都在第一年跟大数据相拥之后就从中甲升级到了中超。
整体上来看,我国全民运动的热情正不断增加。相较2015年的数据,足球、篮球、网球和乒乓球的全民参与程度都有明显增加,其中篮球与足球的增幅达到了20%以上。适合个人训练的运动种类正在扩大参与者规模;羽毛球作为2016年的第三大运动种类完美地具备了个人训练(或1对1练习)的运动属性;网球作为具有同样运动属性的运动正吸引更多的人群加入到这项运动中来。
尽管B端是体育大数据目前的利润来源,但很明显反而是C端才让体育大数据拥有更大的商业想象空间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01