
检察机关大数据建设应用典型案例
当前,贵州省检察机关正在全力打造检察大数据三个应用系统。
一是创建大数据司法办案辅助系统,实现司法办案智能化。该系统以案件证据表单审查、案件审查、出庭支持三大模块为依托,运用人工智能和大数据技术,通过案件信息智能采集,“要素—证据”智能关联,绘制“犯罪构成统一标准”图谱,建立各罪名案件数学模型。
二是创设案件智能研判系统,为个案、类案研判提供精准数据分析。基于海量数据,个案研判可实现对犯罪事实和嫌疑人画像、案件偏离要素原因分析、案件量刑参考、出庭情况评估等功能;类案研判可对某一类犯罪从时间、地域、偏离度等不同维度展开综合分析。运用该系统对贵州近两年办理的14100件故意伤害案件进行分析,发现其中存在要素偏离2332件,量刑偏离2395件,证据风险674件。结合网上案件质量评查系统,已评查各类案件100352件,发现和纠正实体性瑕疵30余个,已由办案单位整改纠偏。
三是创立大数据分析服务系统,为科学管理决策提供“智库意见”。该系统主要从办案强度、质量、效率、效果、规范五个维度为领导决策提供“智库意见”,发挥“大数据”全天候监督的“第三只眼”效能。目前,该系统数据涵盖10余个业务条线,产生并分析数据2594万余条,为各级检察机关领导全面了解当前业务和趋势、促进决策科学化提供有力支撑。
此外,贵州检察机关还统一数据标准,已经建立检察机关信息资源目录和政法机关统一数据交换标准,初步形成电子卷宗库、起诉书库、犯罪嫌疑人基本信息库等各类主题数据库,完成检察数据资产148个,公检互联数据资产56个,检法互联数据资产12个,检司互联数据资产25个,逐步建成检察机关大数据资源池。
二、北京市检察院“检立方C-139”大数据平台
2014年北京市检察院依托全国检察机关统一业务应用系统,利用大数据思维和技术,对历年来积累的办案数据进行了整合、挖掘和利用,建立了“检立方C-139”大数据辅助决策平台,将大数据和检察工作紧密结合。“检立方”的核心理念为“一核、三轴、四维、多面”的大数据立方体。“一核”是指以检察数据为核心,“三轴”是指以规范、监督、公开为三条主轴,“四维”是指绩效、案件、时间、人员四个维度,“多面”包括统计分析、预警研判、管理支撑等多项基本功能,形成检察业务的多维度管理体系。
目前,“检立方”已经采集案件信息60万件,业务数据1.1亿项,整合了四大资源数据库和160个系统功能,通过挖掘、分析765项指标和4300名人员信息,这些数据均细化到每一个院、每一个部门、每一名检察办案人员。通过整合三级检察院案件信息和文书,形成了一案一表和“文书链”,实现了一个案件所有诉讼环节的信息纵向贯通。通过梳理比对案件和流程的关系、信息项和文书之间的对应关系,形成了数据质量检查体系。利用自然语言处理和数据可视化技术,实现了文书多关键词检索以及启发式过滤辅助筛选,使承办人能够快速精准获取相关案件文书,为办案工作提供有力支持。
2017年4月,北京市检察院在“检立方”大数据平台基础上,进一步转型升级打造了检察管理监督平台系统1.0版,已正式上线运行的这一平台将建设成为检察管理监督体系的主阵地和中枢,实现全程网上留痕、动态管控,全院、全员、全过程管理监督。全流程监管将与司法改革后检察官权责清单紧密对接,动态监督每一个办案主体司法办案全过程。
三、浙江省检察院大数据云平台
2016年3月,浙江省检察机关与阿里云签署协议,围绕浙江检务云计算平台建设和数据上云、应用上云加强合作,依托电子检务工程,同步建设“浙检云图”“浙检云视”“浙检云政”“浙检云侦”平台。
“浙检云图”大数据可视化应用平台分总屏和分屏两部分,总屏展示6大业务条线共27个核心指标项。各业务分屏展示侦监指标19项,公诉指标22项,未检指标19项,执检指标22项,控申指标14项等。在全省地图区域展现数据地区分布情况和实时办案数据信息,将分析后的数据以动态、直观的多维报表、图形形式展现,为领导决策提供数据依据。可以实现数据分析结果的随需查询、随需分析、随需展现和随需发布,通过业务全貌、重点评查、辅助决策和智能预判等可视化功能,提升数据价值和决策分析水平。
围绕重点领域,“浙检云图”在对浙江省检察业务全貌分析实现可视化基础上,围绕浙江省检察院发挥职能保护促进非公经济发展和打击污染环境、危害食品安全和网络诈骗犯罪等工作的数据分析实现可视化,体现直观性、实时性、动态性、趋势性和地域性,助力提升对重点检察业务工作的分析决策和趋势预判的能力和水平。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01