京公网安备 11010802034615号
经营许可证编号:京B2-20210330
检察机关大数据建设应用典型案例
当前,贵州省检察机关正在全力打造检察大数据三个应用系统。
一是创建大数据司法办案辅助系统,实现司法办案智能化。该系统以案件证据表单审查、案件审查、出庭支持三大模块为依托,运用人工智能和大数据技术,通过案件信息智能采集,“要素—证据”智能关联,绘制“犯罪构成统一标准”图谱,建立各罪名案件数学模型。
二是创设案件智能研判系统,为个案、类案研判提供精准数据分析。基于海量数据,个案研判可实现对犯罪事实和嫌疑人画像、案件偏离要素原因分析、案件量刑参考、出庭情况评估等功能;类案研判可对某一类犯罪从时间、地域、偏离度等不同维度展开综合分析。运用该系统对贵州近两年办理的14100件故意伤害案件进行分析,发现其中存在要素偏离2332件,量刑偏离2395件,证据风险674件。结合网上案件质量评查系统,已评查各类案件100352件,发现和纠正实体性瑕疵30余个,已由办案单位整改纠偏。
三是创立大数据分析服务系统,为科学管理决策提供“智库意见”。该系统主要从办案强度、质量、效率、效果、规范五个维度为领导决策提供“智库意见”,发挥“大数据”全天候监督的“第三只眼”效能。目前,该系统数据涵盖10余个业务条线,产生并分析数据2594万余条,为各级检察机关领导全面了解当前业务和趋势、促进决策科学化提供有力支撑。
此外,贵州检察机关还统一数据标准,已经建立检察机关信息资源目录和政法机关统一数据交换标准,初步形成电子卷宗库、起诉书库、犯罪嫌疑人基本信息库等各类主题数据库,完成检察数据资产148个,公检互联数据资产56个,检法互联数据资产12个,检司互联数据资产25个,逐步建成检察机关大数据资源池。
二、北京市检察院“检立方C-139”大数据平台
2014年北京市检察院依托全国检察机关统一业务应用系统,利用大数据思维和技术,对历年来积累的办案数据进行了整合、挖掘和利用,建立了“检立方C-139”大数据辅助决策平台,将大数据和检察工作紧密结合。“检立方”的核心理念为“一核、三轴、四维、多面”的大数据立方体。“一核”是指以检察数据为核心,“三轴”是指以规范、监督、公开为三条主轴,“四维”是指绩效、案件、时间、人员四个维度,“多面”包括统计分析、预警研判、管理支撑等多项基本功能,形成检察业务的多维度管理体系。
目前,“检立方”已经采集案件信息60万件,业务数据1.1亿项,整合了四大资源数据库和160个系统功能,通过挖掘、分析765项指标和4300名人员信息,这些数据均细化到每一个院、每一个部门、每一名检察办案人员。通过整合三级检察院案件信息和文书,形成了一案一表和“文书链”,实现了一个案件所有诉讼环节的信息纵向贯通。通过梳理比对案件和流程的关系、信息项和文书之间的对应关系,形成了数据质量检查体系。利用自然语言处理和数据可视化技术,实现了文书多关键词检索以及启发式过滤辅助筛选,使承办人能够快速精准获取相关案件文书,为办案工作提供有力支持。
2017年4月,北京市检察院在“检立方”大数据平台基础上,进一步转型升级打造了检察管理监督平台系统1.0版,已正式上线运行的这一平台将建设成为检察管理监督体系的主阵地和中枢,实现全程网上留痕、动态管控,全院、全员、全过程管理监督。全流程监管将与司法改革后检察官权责清单紧密对接,动态监督每一个办案主体司法办案全过程。
三、浙江省检察院大数据云平台
2016年3月,浙江省检察机关与阿里云签署协议,围绕浙江检务云计算平台建设和数据上云、应用上云加强合作,依托电子检务工程,同步建设“浙检云图”“浙检云视”“浙检云政”“浙检云侦”平台。
“浙检云图”大数据可视化应用平台分总屏和分屏两部分,总屏展示6大业务条线共27个核心指标项。各业务分屏展示侦监指标19项,公诉指标22项,未检指标19项,执检指标22项,控申指标14项等。在全省地图区域展现数据地区分布情况和实时办案数据信息,将分析后的数据以动态、直观的多维报表、图形形式展现,为领导决策提供数据依据。可以实现数据分析结果的随需查询、随需分析、随需展现和随需发布,通过业务全貌、重点评查、辅助决策和智能预判等可视化功能,提升数据价值和决策分析水平。
围绕重点领域,“浙检云图”在对浙江省检察业务全貌分析实现可视化基础上,围绕浙江省检察院发挥职能保护促进非公经济发展和打击污染环境、危害食品安全和网络诈骗犯罪等工作的数据分析实现可视化,体现直观性、实时性、动态性、趋势性和地域性,助力提升对重点检察业务工作的分析决策和趋势预判的能力和水平。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21