
检察机关大数据建设应用典型案例
当前,贵州省检察机关正在全力打造检察大数据三个应用系统。
一是创建大数据司法办案辅助系统,实现司法办案智能化。该系统以案件证据表单审查、案件审查、出庭支持三大模块为依托,运用人工智能和大数据技术,通过案件信息智能采集,“要素—证据”智能关联,绘制“犯罪构成统一标准”图谱,建立各罪名案件数学模型。
二是创设案件智能研判系统,为个案、类案研判提供精准数据分析。基于海量数据,个案研判可实现对犯罪事实和嫌疑人画像、案件偏离要素原因分析、案件量刑参考、出庭情况评估等功能;类案研判可对某一类犯罪从时间、地域、偏离度等不同维度展开综合分析。运用该系统对贵州近两年办理的14100件故意伤害案件进行分析,发现其中存在要素偏离2332件,量刑偏离2395件,证据风险674件。结合网上案件质量评查系统,已评查各类案件100352件,发现和纠正实体性瑕疵30余个,已由办案单位整改纠偏。
三是创立大数据分析服务系统,为科学管理决策提供“智库意见”。该系统主要从办案强度、质量、效率、效果、规范五个维度为领导决策提供“智库意见”,发挥“大数据”全天候监督的“第三只眼”效能。目前,该系统数据涵盖10余个业务条线,产生并分析数据2594万余条,为各级检察机关领导全面了解当前业务和趋势、促进决策科学化提供有力支撑。
此外,贵州检察机关还统一数据标准,已经建立检察机关信息资源目录和政法机关统一数据交换标准,初步形成电子卷宗库、起诉书库、犯罪嫌疑人基本信息库等各类主题数据库,完成检察数据资产148个,公检互联数据资产56个,检法互联数据资产12个,检司互联数据资产25个,逐步建成检察机关大数据资源池。
二、北京市检察院“检立方C-139”大数据平台
2014年北京市检察院依托全国检察机关统一业务应用系统,利用大数据思维和技术,对历年来积累的办案数据进行了整合、挖掘和利用,建立了“检立方C-139”大数据辅助决策平台,将大数据和检察工作紧密结合。“检立方”的核心理念为“一核、三轴、四维、多面”的大数据立方体。“一核”是指以检察数据为核心,“三轴”是指以规范、监督、公开为三条主轴,“四维”是指绩效、案件、时间、人员四个维度,“多面”包括统计分析、预警研判、管理支撑等多项基本功能,形成检察业务的多维度管理体系。
目前,“检立方”已经采集案件信息60万件,业务数据1.1亿项,整合了四大资源数据库和160个系统功能,通过挖掘、分析765项指标和4300名人员信息,这些数据均细化到每一个院、每一个部门、每一名检察办案人员。通过整合三级检察院案件信息和文书,形成了一案一表和“文书链”,实现了一个案件所有诉讼环节的信息纵向贯通。通过梳理比对案件和流程的关系、信息项和文书之间的对应关系,形成了数据质量检查体系。利用自然语言处理和数据可视化技术,实现了文书多关键词检索以及启发式过滤辅助筛选,使承办人能够快速精准获取相关案件文书,为办案工作提供有力支持。
2017年4月,北京市检察院在“检立方”大数据平台基础上,进一步转型升级打造了检察管理监督平台系统1.0版,已正式上线运行的这一平台将建设成为检察管理监督体系的主阵地和中枢,实现全程网上留痕、动态管控,全院、全员、全过程管理监督。全流程监管将与司法改革后检察官权责清单紧密对接,动态监督每一个办案主体司法办案全过程。
三、浙江省检察院大数据云平台
2016年3月,浙江省检察机关与阿里云签署协议,围绕浙江检务云计算平台建设和数据上云、应用上云加强合作,依托电子检务工程,同步建设“浙检云图”“浙检云视”“浙检云政”“浙检云侦”平台。
“浙检云图”大数据可视化应用平台分总屏和分屏两部分,总屏展示6大业务条线共27个核心指标项。各业务分屏展示侦监指标19项,公诉指标22项,未检指标19项,执检指标22项,控申指标14项等。在全省地图区域展现数据地区分布情况和实时办案数据信息,将分析后的数据以动态、直观的多维报表、图形形式展现,为领导决策提供数据依据。可以实现数据分析结果的随需查询、随需分析、随需展现和随需发布,通过业务全貌、重点评查、辅助决策和智能预判等可视化功能,提升数据价值和决策分析水平。
围绕重点领域,“浙检云图”在对浙江省检察业务全貌分析实现可视化基础上,围绕浙江省检察院发挥职能保护促进非公经济发展和打击污染环境、危害食品安全和网络诈骗犯罪等工作的数据分析实现可视化,体现直观性、实时性、动态性、趋势性和地域性,助力提升对重点检察业务工作的分析决策和趋势预判的能力和水平。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18