京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据小白的一些浅见
近期关注大数据比较多,也接触了一些大数据领域的专业人士,收获颇丰。听了诸多专家的观点,对南大通用杜国旺总和华云数据集团的首席技术官郑军博士观点深有感触。在此,基于二位的观点,谈谈我对大数据发展的一些看法。
要谈论大数据,如果学究一点,首先要弄清楚的一个问题就是什么是大数据,怎样来解构大数据这个概念。对于此,杜总的分析还是比较清楚的。
在杜总看来,大数据分为三个层面:
第一, 画像数据,包含人物静态画像、事件动态画像和群类画像。人物静态画像是以人或物为基本线索进行数据关联(如:万科),事件动态画像是以事件主题为线索的数据关联(如:雷阳事件),Hadoop技术为实现以上两个需求提供了良好的技术支撑。群类画像是基于二级标引的多维属性画像,数据源以前两类为基础,将典型特征属性进行标引,然后以某个特征属性为线索进行关联,图数据库为该需求提供较好的技术支撑(如地质测绘、套牌车发现)。在我看来,杜总实际指的是数据的三种类型,这三类数据具有某种层度的递进关系,后一类比前一类更抽象更有价值,尤其是群类画像数据。实际上,我们所指的大数据更多的是指群类画像数据,是对很多个体某一特征的抽象概括数据,这样的数据才更有价值。
第二, 数据的统计分析,基于人物或事件的典型特征统计分析或动态查询,主要是基于统计概念的(如金融精准营销),数据源一般为典型的结构化数据,分析方法也较为成熟,mpp数据库为该需求提供快捷方便的技术支撑。
第三, 数据挖掘,这是目前大数据应用最难的,也是最有价值的,就是分析数据关联关系,主要是基于逻辑概念的,如(气象预报、风险预警、趋势分析、 机器人、watson等等),大部分人认为业务建模是一个非常复杂的事情,需要丰富的行业经验。这也正是大数据的应有之意。要从大量数据中挖掘有价值得信息,这与传统的数据统计分析有很大的不同,是深入数据的价值实体的,从海量数据中发现规律。
华云数据集团的郑军博士认为机器学习对于大数据的发展具有特殊的意义,我深表赞同。按照杜总对大数据的解构分析,数据挖掘才是大数据的本质,而要进行数据挖掘,机器学习方面技术的发展就必不可少了。毕竟要进行海量数据的复杂计算,靠人工来进行传统的统计分析是不现实的。
对于此,我有一个公式:云计算+大数据+机器学习=智能互联网。
其实云计算、大数据、机器学习这三个概念并不是孤立的,而是相辅相成,缺一不可的。要进行大量数据的处理,并且要将这种数据处理能力像水电一样作为基础设施提供给社会,那就必然要向全社会输出计算能力。目前来看,云计算技术承担了为社会提供计算能力的任务。另外,要将打通各个信息孤岛,共享局部甚至是全社会的数据,必然需要一个基于云架构的信息系统,云计算也承担了打通社会数据的使命。
在拥有强大的计算能力之后,只有通过对海量数据的处理,通过数据挖掘发现其中的价值,才算是发挥了云计算的功用。所以云计算和大数据是一枚硬币的两面,相辅相成。云计算和大数据的紧密关系,已经在业界得到普遍认知,但是要将这项事业推向深入,机器学习技术的发展就必不可少。因为人脑虽然具有很强的创造力,但是对大量信息的存储和处理能力却很缺乏,面对大量结构化和非结构化的数据,单靠人工来进行统计分析,是没效率甚至是不可能的。为计算系统赋予一定的智能,发挥其强大的存储和计算能力,是大数据发展的必然之路。
上面从概念上谈了大数据的理论,但如果要将大数据技术进行实际应用,应该怎么做,又会遇到什么困难呢?对于这个问题,华云数据集团的郑军博士给予了我一些启发。郑博士认为,我们的信息化进程可分为三个阶段:IT化阶段、数字化阶段、数据化阶段。目前阻碍我国大数据产业发展的一个重要障碍就是信息化进程的落后。用郑博士的话说,要进行大数据应用,首先必须得有大量数据,而目前我国的很多企业尤其是小型企业,还处在IT化阶段,几乎没有数据积累。如果“小数据”都没有,谈何大数据。阻碍大数据产业发展的另一障碍就是信息孤岛的大量存在,要想大数据获得发展,首先必须进行全社会数据的打通。
那么,我国的大数据应用情况到底怎么样了,是处于什么阶段呢?带着这样的问题,中国软件网进行了市场调研,并对调研结果进行分析,得出了一些有意思的结论,在此也跟大家分享一下:
1. 大数据主要是从公司的日常运营中产生,其次是从外部引入。

2.产生和存储的大数据类型主要有交易数据、生产数据,其次为移动数据、机器和传感器数据,可以看到企业产生和存储的主要数据都与其业务相关。产生的数据略多于存储的数据,说明还有部分产生的数据没能获得存储。
3. 从数据处理的全生命周期来看,目前采用的大数据技术方案主要集中于数据采集、分布式存储、分布式计算等靠前的环节。值得注意的是,在大数据分析处理环节,较多的企业也采用了相应的技术方案。
4.目前已经有和需求较多的大数据应用主要集中新业务拓展、提升客户体验、优化客户市场细分、精细化管理、市场和用户行为预测等几个方面。大数据应用的需求普遍高于已经有的大数据应用,说明市场需求还没有得到满足。但在精细化生产方面,已经有的大数据应用已经超过需求。

5.在大数据应用过程中的难点方面,主要集中在数据安全、数据存储压力、数据类型多样化、数据资源不丰富等几个方面。
6. 在大数据应用部署方面,已经在使用、计划1年内部署、计划2年内部署的企业相当,各占30%左右。
7. 企业在大数据应用方面,最希望获得技术支持、其次是数据业务发展规划支持,以及业务需求管理、产品/服务开发方面的支持。
以上是通过走访行业专家和我们自己的一些研究,对大数据产业发展的一些发现和看法。一方面为我国大数据领域的快速发展而兴奋,另一方面也深感挑战的艰巨。前路漫漫,我国大数据的发展还得靠大家的共同努力。但我始终坚信,道路是曲折的,前途是异常光明的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05