R语言进行中文分词和聚类
由于时间较紧,且人手不够,不能采用分类方法,主要是没有时间人工分类一部分生成训练集……所以只能用聚类方法,聚类最简单的方法无外乎:K-means与层次聚类。
尝试过使用K-means方法,但结果并不好,所以最终采用的是层次聚类,也幸亏结果还不错……⊙﹏⊙
分词(Rwordseg包):
安装:
P.S.
由于我是64位机,但是配置的rj包只能在32bit的R上使用,而且Rwordseg包貌似不支持最新版本的R(3.01),所以请在32bit的R.exe中运行如下语句安装0.0-4版本:
貌似直接在Rstudio中运行会安装失败,而且直接在Rstudio中点击install安装,安装的是0.0-5版本,我就一直失败……
使用:
1. 分词时尽量关闭人名识别
否则会将“中秋国庆”,分为“中”“秋国庆“
2. 可以使用insertWords()函数添加临时的词汇
3. 对文档向量进行分词时,强烈建议用for循环对每一个元素执行segmentCN,而不要对整个向量执行!!!因为我蛋疼的发现对整个向量执行时,还是会出现识别人名的现象……
4. 运行完后请detach()包,removeWords()函数与tm包中的同名函数冲突。
微博分词的一些建议:
1. 微博内容中经常含有url,分词后会将url拆散当做英文单词处理,所以我们需要用正则表达式,将url去掉:
2. 微博中含有#标签#,可以尽量保证标签的分词准确,可以先提取标签,然后用insertWords()人工添加一部分词汇:
文本挖掘(tm包):
语料库:
分词之后生成一个列表变量,用列表变量构建语料库。
由于tm包中的停用词()都是英文(可以输入stopwords()查看),所以大家可以去网上查找中文的停用词(一般700多个的就够了,还有1208个词版本的),用removeWords函数去除语料库中的停用词:
TDM:
生成语料库之后,生成词项-文档矩阵(Term Document Matrix,TDM),顾名思义,TDM是一个矩阵,矩阵的列对应语料库中所有的文档,矩阵的行对应所有文档中抽取的词项,该矩阵中,一个[i,j]位置的元素代表词项i在文档j中出现的次数。
由于tm包是对英文文档就行统计挖掘的,所以生成TDM时会对英文文档进行分词(即使用标点和空格分词),之前Rwordseg包做的就是将中文语句拆分成一个个词,并用空格间隔。
创建TDM的语句为:
变量control是一个选项列表,控制如何抽取文档,removePunctuation表示去除标点,minDocFreq=5表示只有在文档中至少出现5次的词才会出现在TDM的行中。
tm包默认TDM中只保留至少3个字的词(对英文来说比较合适,中文就不适用了吧……),wordLengths = c(1, Inf)表示字的长度至少从1开始。
默认的加权方式是TF,即词频,这里采用Tf-Idf,该方法用于评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度:
1. 在一份给定的文件里,词频 (term frequency, TF) 指的是某一个给定的词语在该文件中出现的次数。这个数字通常会被归一化,以防止它偏向长的文件。
2. 逆向文件频率 (inverse document frequency, IDF) 是一个词语普遍重要性的度量。某一特定词语的IDF,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取对数得到。
3. 某一特定文件内的高词语频率,以及该词语在整个文件集合中的低文件频率,可以产生出高权重的TF-IDF。因此,TF-IDF倾向于保留文档中较为特别的词语,过滤常用词。
由于TDM大多都是稀疏的,需要用removeSparseTerms()函数进行降维,值需要不断的测试,我一般会使词项减少到原有的一半。
层次聚类:
层次聚类的核心实际在距离阵的计算,一般聚类时会使用欧氏距离、闵氏距离等,但在大型数据条件下会优先选择 cosine 距离,及 dissmilarity 函数:
(P.S.要使用cosine方法,需要先安装proxy包。)
层次聚类的方法也有很多,这里选用mcquitty,大家还是多试试,本文给出的选择不一定适合你~
注意:由于R对向量的大小有限制,所以在计算距离时,请优先使用64bit,3.0版本的R~
但如果出现如下报错信息:
"Error in vector(typeof(x$v), nr * nc): vector size cannot be NA
In addition: Warning message:
In nr * nc : NAs produced by integeroverflow"
恭喜你!这个问题64位版本的R也解决不了,因为矩阵超出了R允许的最大限制~我也是遇到同样的问题,所以没办法,只能将原始数据进行拆分,不过我的情况是多个微博账户,但彼此之间的微博分类差不太多,所以可以进行拆分。强烈推荐大家有问题去stackoverflow查找!
(我看到有国外友人说可以用int64包尝试一下,因为tdm其实也是个list,但我没试成功……)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03