
下面是回归分析的各种变体的简单介绍,解释变量和相应变量就是指自变量和因变量。
常用普通最小二乘(OLS)回归法来拟合实现简单线性、多项式和多元线性等回归模型。最小二乘法的基本原理前面已经说明了,使得预测值和观察值之差最小。
R中实现拟合线性模型最基本的函数是lm(),应用格式为:
myfit <- lm(Y~X1+X2+…+Xk,data)
data为观测数据,应该为一个data.frame,前面是拟合表达式,Y是因变量,X1-Xk是自变量,+用来分隔不同的自变量的,还有可能用到的其他符号的说明如下:
另外,对lm()方法的返回结果,还有一系列的分析方法,如下:
简单线性回归
基础安装数据women中提供了15个年龄在30-39岁之前的女性的身高和体重信息,这里用身高来预测体重,来尝试lm()方法
[plain]view plaincopy
par(ask = TRUE)
opar <- par(no.readonly = TRUE)
fit <- lm(weight ~ height, data = women)
summary(fit)
women$weight
fitted(fit)
residuals(fit)
plot(women$height, women$weight, main = "30-39的女性",xlab = "身高(英尺)", ylab = "体重(镑)")#观测数据散点图
abline(fit)#拟合线
由summary(fit)的结果coefficients可看出,预测模型为:weight=-81.52+3.45*height。
因为身高不可能为0,你没必要给截距项一个物理解释,它仅仅是一个常量调整项。在Pr(>|t|)栏,可以看到回归系数(3.45)显著(p<0.001),表明身高每增高1英寸,体重将预期增加3.45磅。可决系数-R平方项(0.991)表明模型可以解释体重99.1%的方差,它也是实际和预测值之间的相关系数的平方值。残差标准误差(1.53 lbs)则可认为是模型用身高预测体重的平均误差。F统计量检验所有的预测变量预测响应变量是否都在某个几率水平之上。由于简单回归只有一个预测变量,此处F检验等同于身高回归系数的t检验。
多项式回归
从上面例子最后的图可以看出,我们可以为回归模型增加一个X平方项来增加预测精确度。
[plain]view plaincopy
fit2 <- lm(weight ~ height + I(height^2), data = women)
summary(fit2)
plot(women$height, women$weight, main = "30-39的女性",xlab = "身高(英尺)", ylab = "体重(镑)")#观测数据散点图
lines(women$height, fitted(fit2))
由summary(fit2)的结果coefficients可看出,预测模型为:weight=261.88-7.35*height+0.083* height* height。在p<0.001水平下,回归系数都非常显著。模型的方差解释率已经增加到了99.9%。二次项的显著性(t = 13.89,p<0.001)表明包含二次项提高了模型的拟合度。从图中也能看出来,预测值和观测值的拟合程度更好了。
介绍下car包中的scatterplot()函数,它可以很容易、方便地绘制二元关系图。
[plain]view plaincopy
library(car)
scatterplot(weight ~ height, data = women,spread = FALSE, lty.smooth = 2, pch = 19, main ="30-39的女性", xlab = "身高(英尺)", ylab = "体重(镑)")
如上,是scatterplot()对women数据所绘的身高与体重的散点图。直线为线性拟合,虚线为曲线平滑拟合,边界为箱线图。
多元线性回归
这里以基础包中的state.x77数据集为例,探究一个州的犯罪率和其他因素的关系,包括人口、文盲率、平均收入和结霜天数(温度在冰点以下的平均天数)。
[plain]view plaincopy
states <- as.data.frame(state.x77[, c("Murder","Population", "Illiteracy", "Income","Frost")])
colnames(states) <- c("谋杀率", "人口","文盲率", "收入水平", "结霜天数")
cor(states)
library(car)
scatterplotMatrix(states, spread = FALSE, main = "ScatterplotMatrix")
cor()函数显示两个变量之间的相关系数,从图中可以看到,谋杀率是双峰的曲线,每个预测变量都一定程度上出现了偏斜。谋杀率随着人口和文盲率的增加而增加,随着收入水平和结霜天数增加而下降。同时,越冷的州文盲率越低,收入水平越高。
下面对states数据做多项线性拟合,看人口、文盲率、收入水平、结霜天数对谋杀率的影响水平。
[plain]view plaincopy
colnames(states) <- c("Murder", "Population","Illiteracy", "Income", "Frost")
fit <- lm(Murder ~ Population + Illiteracy + Income + Frost, data= states)
summary(fit)
从结果可以看出,文盲率和人口的系数是显著的,结霜率和收入水平系数不显著,这两者对谋杀率的影响不是线性的。
上面的例子是自变量之间相互独立的,下面看一个有交互项的多元线性回归的案例。同样是R中的基础安装数据mtcars,
[plain]view plaincopy
fit <- lm(mpg ~ hp + wt + hp:wt, data = mtcars)
summary(fit)
从summary(fit)的Pr(>|t|)栏中能看出,hp:wt项是显著的,说明汽车的马力和车重不是相互独立的,两者对每英里的耗油量的影响也都是显著的。
汽车每英里耗油量mpg的模型为mpg =49.81 + 0.12×hp + 8.22×wt + 0.03×hp×wt。
effects包可以用来分析不同wt下,mpg与hp之间的线性关系。如下,图中能看出,当wt分别为2.2,3.2,4.2时mpg与hp之间的线性关系,差异还是很明显的。
[plain]view plaincopy
library(effects)
plot(effect("hp:wt", fit, xlevels= list(wt = c(2.2, 3.2,4.2))), multiline = TRUE)
回归诊断
summary()方法能获取模型的参数和相关统计量,要进一步诊断模型是否合适,还需要另外的工作。
R中有许多检验回归分析中统计假设的方法。plot()方法可以生成评价模型拟合情况的四幅图形。用women数据集的回归模型为例:
[plain]view plaincopy
fit <- lm(weight ~ height, data = women)
par(mfrow = c(2, 2))
plot(fit)
par(opar)
OLS回归的统计假设。(担心我自己的理解有偏误,所以这里的解读全部摘抄自R语言实战!)
正态性当预测变量值固定时,因变量成正态分布,则残差值也应该是一个均值为0的正态分布。正态Q-Q图(Normal Q-Q,右上)是在正态分布对应的值下,标准化残差的概率图。若满足正态假设,那么图上的点应该落在呈45度角的直线上;若不是如此,那么就违反了正态性的假设。
独立性你无法从这些图中分辨出因变量值是否相互独立,只能从收集的数据中来验证。上面的例子中,没有任何先验的理由去相信一位女性的体重会影响另外一位女性的体重。假若你发现数据是从一个家庭抽样得来的,那么可能必须要调整模型独立性的假设。
线性若因变量与自变量线性相关,那么残差值与预测(拟合)值就没有任何系统关联。换句话说,除了白噪声,模型应该包含数据中所有的系统方差。在“残差图与拟合图”(Residuals vs Fitted,左上)中可以清楚的看到一个曲线关系,这暗示着你可能需要对回归模型加上一个二次项。
同方差性若满足不变方差假设,那么在位置尺度图(Scale-Location Graph,左下)中,水平线周围的点应该随机分布。该图似乎满足此假设。
最后一幅“残差与杠杆图”(Residualsvs Leverage,右下)提供了你可能需要关注的单个观测点的信息。从图形可以鉴别出离群点、高杠杆值点和强影响点。
一个观测点是离群点,表明拟合回归模型对其预测效果不佳(产生了巨大的或正或负的残差)。
一个观测点有很高的杠杆值,表明它是一个异常的预测变量值的组合。也就是说,在预测变量空间中,它是一个离群点。因变量值不参与计算一个观测点的杠杆值。
一个观测点是强影响点(influentialobservation),表明它对模型参数的估计产生的影响过大,非常不成比例。强影响点可以通过Cook距离即Cook’s D统计量来鉴别。
再来看二次拟合的诊断图。
[plain]view plaincopy
newfit <- lm(weight ~ height + I(height^2), data = women)
par(mfrow = c(2, 2))
plot(newfit)
par(opar)
图中有两个比较明显的离群点,12和15,可以删除这两个点后再做回归,效果会更好。
[plain]view plaincopy
newfit <- lm(weight ~ height + I(height^2), data = women[-c(13,15),])
par(mfrow = c(2, 2))
plot(newfit)
par(opar)
另外car包中提供了许多方法可以增强拟合和评价回归模型的能力,如下图,不再细说:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12