 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		下面是回归分析的各种变体的简单介绍,解释变量和相应变量就是指自变量和因变量。
	 
常用普通最小二乘(OLS)回归法来拟合实现简单线性、多项式和多元线性等回归模型。最小二乘法的基本原理前面已经说明了,使得预测值和观察值之差最小。
R中实现拟合线性模型最基本的函数是lm(),应用格式为:
myfit <- lm(Y~X1+X2+…+Xk,data)
data为观测数据,应该为一个data.frame,前面是拟合表达式,Y是因变量,X1-Xk是自变量,+用来分隔不同的自变量的,还有可能用到的其他符号的说明如下:
	 
另外,对lm()方法的返回结果,还有一系列的分析方法,如下:
	 
简单线性回归
基础安装数据women中提供了15个年龄在30-39岁之前的女性的身高和体重信息,这里用身高来预测体重,来尝试lm()方法
[plain]view plaincopy
par(ask = TRUE)
opar <- par(no.readonly = TRUE)
fit <- lm(weight ~ height, data = women)
summary(fit)
women$weight
fitted(fit)
residuals(fit)
plot(women$height, women$weight, main = "30-39的女性",xlab = "身高(英尺)", ylab = "体重(镑)")#观测数据散点图
abline(fit)#拟合线
				 
			
由summary(fit)的结果coefficients可看出,预测模型为:weight=-81.52+3.45*height。
因为身高不可能为0,你没必要给截距项一个物理解释,它仅仅是一个常量调整项。在Pr(>|t|)栏,可以看到回归系数(3.45)显著(p<0.001),表明身高每增高1英寸,体重将预期增加3.45磅。可决系数-R平方项(0.991)表明模型可以解释体重99.1%的方差,它也是实际和预测值之间的相关系数的平方值。残差标准误差(1.53 lbs)则可认为是模型用身高预测体重的平均误差。F统计量检验所有的预测变量预测响应变量是否都在某个几率水平之上。由于简单回归只有一个预测变量,此处F检验等同于身高回归系数的t检验。
多项式回归
从上面例子最后的图可以看出,我们可以为回归模型增加一个X平方项来增加预测精确度。
[plain]view plaincopy
fit2 <- lm(weight ~ height + I(height^2), data = women)
summary(fit2)
plot(women$height, women$weight, main = "30-39的女性",xlab = "身高(英尺)", ylab = "体重(镑)")#观测数据散点图
lines(women$height, fitted(fit2))
	   
 
由summary(fit2)的结果coefficients可看出,预测模型为:weight=261.88-7.35*height+0.083* height* height。在p<0.001水平下,回归系数都非常显著。模型的方差解释率已经增加到了99.9%。二次项的显著性(t = 13.89,p<0.001)表明包含二次项提高了模型的拟合度。从图中也能看出来,预测值和观测值的拟合程度更好了。
介绍下car包中的scatterplot()函数,它可以很容易、方便地绘制二元关系图。
[plain]view plaincopy
library(car)
scatterplot(weight ~ height, data = women,spread = FALSE, lty.smooth = 2, pch = 19, main ="30-39的女性", xlab = "身高(英尺)", ylab = "体重(镑)")
	 
如上,是scatterplot()对women数据所绘的身高与体重的散点图。直线为线性拟合,虚线为曲线平滑拟合,边界为箱线图。
多元线性回归
这里以基础包中的state.x77数据集为例,探究一个州的犯罪率和其他因素的关系,包括人口、文盲率、平均收入和结霜天数(温度在冰点以下的平均天数)。
[plain]view plaincopy
states <- as.data.frame(state.x77[, c("Murder","Population", "Illiteracy", "Income","Frost")])
colnames(states) <- c("谋杀率", "人口","文盲率", "收入水平", "结霜天数")
cor(states)
library(car)
scatterplotMatrix(states, spread = FALSE, main = "ScatterplotMatrix")
	 
cor()函数显示两个变量之间的相关系数,从图中可以看到,谋杀率是双峰的曲线,每个预测变量都一定程度上出现了偏斜。谋杀率随着人口和文盲率的增加而增加,随着收入水平和结霜天数增加而下降。同时,越冷的州文盲率越低,收入水平越高。
下面对states数据做多项线性拟合,看人口、文盲率、收入水平、结霜天数对谋杀率的影响水平。
[plain]view plaincopy
colnames(states) <- c("Murder", "Population","Illiteracy", "Income", "Frost")
fit <- lm(Murder ~ Population + Illiteracy + Income + Frost, data= states)
summary(fit)
	
     从结果可以看出,文盲率和人口的系数是显著的,结霜率和收入水平系数不显著,这两者对谋杀率的影响不是线性的。
上面的例子是自变量之间相互独立的,下面看一个有交互项的多元线性回归的案例。同样是R中的基础安装数据mtcars,
[plain]view plaincopy
fit <- lm(mpg ~ hp + wt + hp:wt, data = mtcars)
summary(fit)
				 
			
从summary(fit)的Pr(>|t|)栏中能看出,hp:wt项是显著的,说明汽车的马力和车重不是相互独立的,两者对每英里的耗油量的影响也都是显著的。
汽车每英里耗油量mpg的模型为mpg =49.81 + 0.12×hp + 8.22×wt + 0.03×hp×wt。
effects包可以用来分析不同wt下,mpg与hp之间的线性关系。如下,图中能看出,当wt分别为2.2,3.2,4.2时mpg与hp之间的线性关系,差异还是很明显的。
[plain]view plaincopy
library(effects)
plot(effect("hp:wt", fit, xlevels= list(wt = c(2.2, 3.2,4.2))), multiline = TRUE)
				 
			
	
回归诊断
summary()方法能获取模型的参数和相关统计量,要进一步诊断模型是否合适,还需要另外的工作。
R中有许多检验回归分析中统计假设的方法。plot()方法可以生成评价模型拟合情况的四幅图形。用women数据集的回归模型为例:
[plain]view plaincopy
fit <- lm(weight ~ height, data = women)
par(mfrow = c(2, 2))
plot(fit)
par(opar)
				 
			
OLS回归的统计假设。(担心我自己的理解有偏误,所以这里的解读全部摘抄自R语言实战!)
正态性当预测变量值固定时,因变量成正态分布,则残差值也应该是一个均值为0的正态分布。正态Q-Q图(Normal Q-Q,右上)是在正态分布对应的值下,标准化残差的概率图。若满足正态假设,那么图上的点应该落在呈45度角的直线上;若不是如此,那么就违反了正态性的假设。
独立性你无法从这些图中分辨出因变量值是否相互独立,只能从收集的数据中来验证。上面的例子中,没有任何先验的理由去相信一位女性的体重会影响另外一位女性的体重。假若你发现数据是从一个家庭抽样得来的,那么可能必须要调整模型独立性的假设。
线性若因变量与自变量线性相关,那么残差值与预测(拟合)值就没有任何系统关联。换句话说,除了白噪声,模型应该包含数据中所有的系统方差。在“残差图与拟合图”(Residuals vs Fitted,左上)中可以清楚的看到一个曲线关系,这暗示着你可能需要对回归模型加上一个二次项。
同方差性若满足不变方差假设,那么在位置尺度图(Scale-Location Graph,左下)中,水平线周围的点应该随机分布。该图似乎满足此假设。
最后一幅“残差与杠杆图”(Residualsvs Leverage,右下)提供了你可能需要关注的单个观测点的信息。从图形可以鉴别出离群点、高杠杆值点和强影响点。
一个观测点是离群点,表明拟合回归模型对其预测效果不佳(产生了巨大的或正或负的残差)。
一个观测点有很高的杠杆值,表明它是一个异常的预测变量值的组合。也就是说,在预测变量空间中,它是一个离群点。因变量值不参与计算一个观测点的杠杆值。
一个观测点是强影响点(influentialobservation),表明它对模型参数的估计产生的影响过大,非常不成比例。强影响点可以通过Cook距离即Cook’s D统计量来鉴别。
再来看二次拟合的诊断图。
[plain]view plaincopy
newfit <- lm(weight ~ height + I(height^2), data = women)
par(mfrow = c(2, 2))
plot(newfit)
par(opar)
	
    图中有两个比较明显的离群点,12和15,可以删除这两个点后再做回归,效果会更好。
[plain]view plaincopy
newfit <- lm(weight ~ height + I(height^2), data = women[-c(13,15),])
par(mfrow = c(2, 2))
plot(newfit)
par(opar)
另外car包中提供了许多方法可以增强拟合和评价回归模型的能力,如下图,不再细说:
	 
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23