京公网安备 11010802034615号
经营许可证编号:京B2-20210330
互联网影视大数据时代来临
“目前,互联网影视行业正处于虚假繁荣的泡沫状况,如果没有强有力的监管手段和行业新标准,整个行业很可能会出现‘信用危机现象’,这不利于行业的良性循环。”蓝水科技CEO王欢在接受中国经济时报记者采访时表示。
互联网重构了影视生态,与传统影视时代不同,互联网影视时代,行业在内容模式、传播方式、运营手法上已经大为不同,新业态的发展,意味着互联网影视行业需要新的标准。
共赢促行业良性发展
“传统的甲方与乙方模式已经不能适应互联网影视行业,现在是需要让产业链上的编剧、投资人、广告商、终端用户等,都能得到最大的收益。”王欢表示,可以通过大数据的挖掘分析,为互联网影视行业提供全方位的科学决策。
业界预测,2017年至2018年中国大数据市场规模将维持40%左右的高速增长。在王欢看来,成功的大数据公司应该具备以下几点:一是有渠道、手段和技术能力得到优质数据资源;二是能够为用户找到解决价值盲点的数据,通过建模和分析形成效益变现;三是能够处理好去隐私化和大数据安全的关系;四是要有合作共赢的商业模式。
小鲜肉多了,脍炙人口的作品少了,很多影视剧没有用户黏性,影视行业存在着虚浮的泡沫,急需成熟的工业化运营体系。以美国好莱坞为例,美国的影视产业有一套自己的企业评级标准,通过经营规模、经验以及规范程度为企业评级,将企业划分为不同的等级,以便于影视产业链各环节都能有参照的标准。在我国,影视企业并没有完善的规范和体系。
王欢告诉记者,“蓝水科技希望通过大数据创建新的评价体系,通过打造合作共赢的商业模式,为影视全产业链的提升来扩大利润空间。”
在王欢看来,建立权威、有效的行业标准,不仅需要庞大、多样性的数据,更需要全新的维度和分析方法,才能为互联网影视行业得出最清晰的结论,正向引导行业发展。
“蓝水科技搭建的大数据平台要为影视产业链的各方进行服务,整合整个行业的资源。全程跟踪影视项目从创意、投资、制作到宣发的全过程,将产业链的各方连接起来。”王欢表示。
不过,王欢强调,互联网影视行业是以内容为主导,只有产生价值才能使行业良性循环。同时,也面临两大难点:一是在标准建立和验证过程中,数据比较杂,需要经过大量论证,确定建模需要数百次,因此,不仅算法要精准,还需要深入了解互联网行业,才能知道数据对各方是不是有价值;二是在对大数据的处理上,面临着数据安全如何保障的问题,以及随着通信技术的发展,互联网影视产业的数据越来越大,技术该如何处理。
王欢表示,互联网影视产业是一片蓝海,目前亟须构建成熟的信用体系,才能有利于实现各方的共赢。
搜视率为互联网影视标准“拓荒”
近几年,中国的互联网影视产业步入了发展的快车道,但互联网影视剧动辄几十亿、上百亿的网络点击量的背后存在着数据造假问题。在互联网影视时代,亟须建立一个更加客观的评价指标。
“以往对互联网影视作品的评价是基于点击量这一标准,然而点击量很难在评价作品中完全代表用户的习惯,也无法准确判断用户的数量,而且数据容易被操纵,还会存在巨大的偏差。正是基于此,提出了以用户量为基础的搜视率指标体系,通过对短时间内主动搜索观看影视人数占总用户的比重,反映作品价值的输出情况,成为节目制作、编排、调整的重要参考和媒介计划评估、项目评估的重要指标。”王欢告诉记者。
据介绍,搜视率打破了现阶段互联网影视作品单纯依靠点击量和用户赞、踩、评论等单一维度进行评价的局面,通过互联网数据结合运营商、视频平台、社交平台、直播平台等多数据维度,结合系统抽样规则,科学算法体系交叉出各类率项指标,多维度对作品的互联网表现、周期走势、受众推及等焦点问题进行有效的数据分析,对作品给出综合评价。
王欢强调,搜视率指标体系的优点是能够精确到个体,对用户的观影行为进行可持续性的监测,同时打造精准的用户画像。作为电视台收视率的有效补充,能够为从业者和行业主管单位,提供最为科学的决策参考依据。
因此,“搜视率”在互联网影视时代更具价值。
王欢认为,随着搜视率的广泛应用,内容生产商能够根据数据调整内容策略和市场定位;投资者能够更清晰地了解行业,洞察不同影视方向的增长点;广告主们根据数据反映的情况,制定更有效的传播策略,提升品牌与销量;视频平台能更精准策划栏目,满足用户需求;而用户的体验持续提升,付费意识增强,最终使得行业的标准更牢固、生态链更加健康有序。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27