京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据仓库的几个原则,让你避免“陷阱”
想要数据粒度的合理性、模型的灵活性得到保证,并且能够适应未来的信息资源,需要遵守维度建模的一些原则。否则,很容易会遇到数据仓库障碍,并且把用户弄糊涂。
1.原子数据需详细
维度建模应该使用最基础的原子数据进行填充,以支持不可预知的来自用户查询的过滤和分组请求。
用户通常不希望每次只看到一个单一的记录,但是你无法预测用户想要掩盖或显示哪些数据。如果只有汇总数据,那么你已经设定了数据的使用模式,当用户想要深入挖掘数据时,他们就会遇到障碍。尽管原子数据通过概要维度建模补充也是一种办法,但是这样做的话,企业用户便无法只在汇总数据上工作,毕竟,他们需要原始数据回答不断变化的问题。
2.使用代理键
按顺序分配代理键(除了日期维度)可以获得一系列的操作优势,包括更小的事实表、索引以及性能改善。如果你正在跟踪维度属性的变化,并需要为每个变化使用一个新的维度记录,那么代理键就显得十分重要了。因为,即使你的商业用户没有初始化跟踪属性改变的设想值,使用代理也会使下游策略变化更宽松。另外,代理也允许使用多个业务键映射到一个普通的配置文件中,这有利于缓冲意想不到的业务活动。
3.标记和过滤范围值
值得注意的是,编码、关联的解码、用于标记和查询过滤的描述符,应该被捕获到维度表中,避免在事实表中存储神秘的编码字段或庞大的描述符字段。同样的,不要只在维度表中存储编码,而要假定用户不需要描述性的解码,或它们将在BI应用程序中得到解决。如果它是一个行/列标记或下拉菜单过滤器,那么它应该当作一个维度属性处理。
另外,事实表的外键不应该为空,同时在维度表的属性字段中应使用“NA”或另一个默认值来替换空值,这也是明智的,可以减少用户的困惑。
4.一致的维度,集成整个企业的数据
企业数据仓库一致的维度(也叫做通用维度、标准或参考维度)是最基本的原则,它在ETL系统中管理一次后,在所有事实表中都可以重用。
一致的维度,在整个维度模型中可以获得一致的描述属性,可以支持从多个业务流程中整合数据。企业数据仓库总线矩阵是最关键的架构蓝图,它展现了组织的核心业务流程和关联的维度,重用一致的维度可以缩短产品的上市时间,也消除了冗余设计和开发过程,但一致的维度需要在数据管理和治理方面有较大的投入。
5.围绕业务流程建模
业务流程是组织执行的活动,它们代表可测量的事件,如下一个订单或做一次结算。业务流程通常会捕获或生成唯一的与某个事件相关的性能指标,当这些数据转换成事实后,每个业务流程都会用一个原子事实表表示。除了单个流程事实表外,有时会以多个流程事实表合并成一个事实表,而且合并事实表是对单一流程事实表的一个很好的补充。
6.相同的粒度或同级的详细程度
在组织事实表时,粒度上有三个基本原则:事务、周期快照、累加快照。无论粒度类型如何,事实表中的度量单位都必须达到相同水平的详细程度;如果事实表中的事实表现的粒度不一样,企业用户容易混淆,BI应用程序也会随之变得不堪一击,从而导致返回的结果不对等低级错误的发生。
7.一对一的关联日期维度表
如上文所说,每个可测量事件总有一个日期戳信息,每个事实表至少需要有一个外键,能够关联到一个日期维度表,它的粒度就是一天。这个方法,利用的是日历属性和非标准的关于测量事件日期的特性,如财务月和公司假日的指示符;当然,有时一个事实表中会有多个日期外键。
8.解决多对一关系
属性之间分层的、多对一(M:1)的关系,通常是未规范化的,或者被收缩到扁平型的维度表中。如果你曾经有过为事务型系统设计实体关系模型的经历,那你一定要摒弃掉旧有的思维模式,将其规范化或将M:1关系拆分成更小的子维度。维度反向规范化,便是维度建模中常用的词汇。
一对一的关系,如一个产品描述对应一个产品代码,可以在维度表中处理。然而,在单个维度表中,多对一(M:1)的关系也非常常见,在事实表中偶尔也有多对一关系,如当维度表中有上百万条记录,而它推出的属性又经常发生变化时。不管怎样,在事实表中要慎用M:1关系。
9.解决多对多关系
由于事实表存储的是业务流程事件的结果,因此在它们的外键之间存在多对多(M:M)的关系,如多个仓库中的多个产品在多天销售,这些外键字段便不能为空。有时一个维度可以为单个测量事件赋予多个值,如一个保健对应多个诊断,或多个客户有一个银行账号,在这些情况下,它的不合理直接解决了事实表中多值维度,这可能违反了测量事件的天然粒度,因此我们使用多对多、双键桥接表连接事实表。
10.平衡需求和现实,提供DW/BI解决方案
维度建模需要不断在用户需求和数据源事实之间进行平衡,才能够提交可执行性好的设计。更重要的是,要符合业务的需要,需求和事实之间的平衡是DW/BI从业人员必须面对的事实,无论是集中在维度建模,还是项目策略、技术/ETL/BI架构,或开发/维护规划,都要面对这一事实。
总的来说,数据仓库维度建模需要注意的部分挺多,在建模的过程中务必要多留心眼,细致谨慎,这才是成功之道。尤其进入大数据时代,与数据打交道的机会愈趋增多,要想成为工作中的“常胜将军”,切忌马虎。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15