京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中字符串中的数字提取方法
逛到一个有意思的博客 在里面看到一篇关于ValueError: invalid literal for int() with base 10错误的解析,针对这个错误,博主已经给出解决办法,使用的是re.sub 方法
但是没有说明什么含义,于是去查了其他的资料,做一下记录:
在Python3.5.2 官方文档re模块中sub函数的定义是:
re.sub(pattern, repl, string, count=0, flags=0)
在字符串 string 中找到匹配正则表达式 pattern 的所有子串,用另一个字符串 repl 进行替换。如果没有找到匹配 pattern 的串,则返回未被修改的 string。Repl 既可以是字符串也可以是一个函数。
由此可分析上面使用的语句的含义:在'100abc'这个字符串中找到非数字的字符(正则表达式中'\D'表示非数字),并用""替换,然后返回的就是只剩下数字的字符串。
>>> totalCount = '100abc'
>>> totalCount = re.sub("\D", "", totalCount)
>>> print(totalCount)
100
>>> type(totalCount)
<class 'str'>
好吧,以上说明完毕,不过其实我想到的是我爬取知乎所关注的问答时,所遇到的类似的问题:
其中第三行之所以能用int(),是因为string.split()[0]将answer_num_get的值“32 个回答”提取出数字(注:32后面有一个空格,在这里非常重要,因为知乎上抓取回来的这个元素就是)
split()的定义 str.split(sep=None, maxsplit=-1)
由此可看出split()的第一个参数是分隔符,如果什么都不填就是默认是以空格来分隔。
第一种方法需要用到正则表达式,第二种方法则需要有分隔符(我猜是不是这个原因,在原网页上总答案数的数字后有个空格存在)。 这两种方法都有点局限性,不知道是否有更好的方法来分离字符串中的数字。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06