京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在信贷行业的营销与模型应用案例
随着移动端增长红利趋于减少,各媒体、搜索引擎的在线流量竞价不断走高。现如今,单纯的在线展示广告获客成本愈发透明,效果增长乏力。随着大数据的兴起与机器学习技术的不断提升,集奥聚合通过自身丰富的客户画像标签体系,结合业界先进的机器学习技术,突破传统广告的局限性(仅通过人为主观精心设计的统一广告页来吸引客户),实现多元优化及精准需求预测,提升各流转环节,达到精准营销。本文诣在通过真实营销项目案例与大家共同探讨学习。
项目背景
如果说2013年是互联网金融元年的话,那么2016年无疑是普惠金融的爆发年,伴随着大数据行业的逐步发展,FINTECH 技术的日趋完善,普惠金融的竞争也愈演愈烈。这种竞争最终直接演变为了各家公司获客能力及风控能力的全面比拼。集奥聚合作为一家大数据创新应用服务公司,对于如何利用大数据技术以及多年积累的运营经验,帮助企业对于其目标客群进行挖掘及营销有着自己独特的理解和实践。
在本文介绍的案例中,取得的效果为:预约率提升为其他渠道的2.5倍左右,投资回报率较其他方式提升64%。
项目流程
1、双方基于业务需求进行客户匹配,返回脱敏客户标识到集奥聚合进行数据贴标;
2、通过分析信贷类产品的客户画像对客户进行需求&价值分析,筛选出高需求高价值客户,给到合作企业进行客户需求调研(可根据不同层级客户匹配不同触达方式及权益等营销方案设计);
3、根据合作企业实时性数据反馈,进行筛选维度调整,不断优化迭代模型,提升各环节转化率。
如图:
需求预测模型介绍
集奥聚合通过标签数据与模型相结合,筛选出最优质客户帮助企业进行触达,在提升响应率前提下,达到提升业务收入同时节约合作企业各项成本的目标。
1、基于标签数据的触发推荐
提取有对应信贷产品标签访问的客户作为触发推荐基础目标客户,根据需求强度不同(本品->竞品->关键词->相关衍生品)逐步扩大触发人群基础规模。同时根据不断反馈迭代,扩充相似高转化标签,去除低转化标签,优化触发规则。
2、基于客户相似度的模型排序推荐
本项目诣在预测客户对借贷产品的需求程度从而进行个性化营销推荐
(1)模型选择
目标变量的样本反馈为真实的有无借款需求,即二分类问题。本项目通过不断尝试,最终选择深度学习技术进行模型发现。
(2)特征变量选取及相关算法
机器学习中,首要就是找出相关特征(特征选择与特征提取)。业界流传名句之一:数据和特征决定了机器学习的上限,而模型和算法调整只是为了无限逼近这个上限而已。故此,数据与特征工程是机器学习中的重中之重一环。由于集奥聚合亿级标签数据的高维度、稀疏性等特性,在工程上选用了大约2.5万个特征变量作为输入进入模型。
(3)模型效果检验
为有效检验模型效果,并兼顾模型泛化、防止过拟合,将样本数据进行分割,分为训练集和测试集,比例为7:3。
效果检验指标采用训练集及测试集 AUC(Area under ROC)。
以下三图分别为:欠拟合,适度拟合及过度拟合效果示意图。欠拟合会出现训练集及测试集效果均不佳的表现;过度拟合模型结果泛化性差,容易出现训练集结果好,测试集结果差的情况出现。
营销效果
1、根据某信贷机构反馈数据新定制化借贷需求预测模型结果训练集 AUC 为0.82,测试集0.75。原有贷款模型 AUC 为0.63,定制化后效果提升 AUC 为之前的1.19倍;
2、客户预约率为其他渠道的2.5倍左右;
3、通过有效的触达方式,核算成按 CPS 方式,运营成本较其他项目下降节省39%。
大数据与机器学习紧密相连,但是大数据并不等同于机器学习,机器学习也不完全等同于大数据。随着数据量的提升,大数据中包含分布式计算、内存数据库、多维分析等多种技术。机器学习只是大数据分析中的一种而已。但机器学习与大数据的深度结合使数据可以产生更大的价值。基于丰富的数据以及机器学习技术两方面才能更加精确的进行数据“预测”。两者相乘才能发挥出数据的更多价值。
对知识的深刻理解一定是建立在真正应用时。通过实践才可以对机器学习理解更近一层。成功的机器学习应用不是拥有最好的算法,而是拥有更多的数据!所以,欢迎各位希望证实自己研究价值的有志之士加入集奥聚合,一起在数据的海洋中探索技术与数据相结合的价值之美。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15