
数据分析的三层需求
为什么有的报表好用,有的报表不好用,有的企业会做一堆乱七八糟的报表,最近经常会思考这些问题。有人说数据分析,为了开源节流,这个没有错,今天我从另外一个角度解读。数据分析,是为了应对风险(说明:风险与机会是一起的。PMI中将其共同列为风险管理,本文所有风险与机会同义),开源节流的每一次操作每一个节点,也是风险。
企业经营,风里来雨里去,免不了碰到大大小小的机会和风险,抓住机会躲避风险是每个企业以及个人的毕生追求。
PMI中将风险归为以下几类:
已知的已知风险
未知的已知风险
未知的未知风险
本文将数据分析,也归纳为三层需求
第一层需求:应对已知的已知风险
可以将这一层需求看作为被动使用的数据,拿零售行业的场景举例:
采购员要进行采购,没有数据作为参考,只能进行盲目采购,那商店的缺断货、商品积压的风险一定出现。所以采购员需要通过数据查看各类商品的销售情况、库存情况、可售天数情况进行判断,以此决定采购需求,避免错误的商品采购所导致的商品缺断货、高库存等风险。此为通过数据来应对已知的已知风险。
对于企业之中,这类的应用特别多,多到部分企业会忽略这是一种数据分析的应用。企业中常用的业务系统比如erp等软件系统,也会自带一些简单的数据查看类报表,其作用也是很大程度上来应对这一类风险。
但是,从另一个角度去看,这类风险的应对也有很大的优化空间:
风险应对的效率:提升风险应对的效率,是提升应用标准化的一个体现,当一个应用难以使用时,容易造成人员惰性,取巧而放弃使用,从而提高了风险发生的概率。
复杂的已知的已知风险的应对:绝大部分企业并没有将数据覆盖所有的已知风险,举例:新品的引进,新品的引进为商店带来新的盈利点,但是错误的引进甚至会带来负面效应。大部分企业的新品引进并没有一个很好的方案来应对:通过数据进行品类关联并对比,可以看出本店铺对于市场上销量靠前的商品的缺货情况,本店已有商品的市场占有情况,从而可以优化新品引进的策略。这一类的应用还有很大的空间,这也就是为什么很多企业乐于同行之间的交流,希望彼此可以互通有无,发现类似数据场景的应用。
第二层需求:应对未知的已知风险
这一类数据一般为主动使用的数据,更多的是周期性使用的数据,常见的比如领导们常看的日报表、周报表等。
企业的风险发生的概率是分布在每一天的,但是它每一天都可能发生也可能不发生,例如部分员工的消极怠工、部分商品的质量异常、个别门店突然面临的对手竞争等。这一类风险当然是希望在发生的最短时间内就可以发现并且应对。所以企业中产生了大量的这一类型的报表需求。
这类报表也很常见,但是他们价值的体现不如第一层需求类来的直接,这一类报表经常被浏览,但大部分情况是没有发现风险的,所以有时会产生一种这类报表没什么用的感觉。
在我们所遇到的项目中,这类需求报表占比是很多的,也是争议最大的。领导层所需要看的日/周/月报类报表相对还好,毕竟是每天都会有人看,并且作为企业数据监督和追踪的一种形式。
此外,还会有很多分析类的报表也属于这一层级,比如商品的价格带分析:找到某类商品的价格点,对比销售高点或销量高点,从而发现可能的商品价格分布的不合理或者货架摆放位置的不合理(价格点商品附近陈列丰富的商品可以给顾客带来商品丰富的感觉)。进一步调整商品价格分布以应对商品陈列或者价格分布的风险(机会)。
这类报表的应用难度比较大,因为经验或者知识储备的不同,对风险的认知和识别能力不同。同样以上面的价格带分析报表为例,其目的为应对陈列、商品价格分布、商品引进/采购、目标活动人群选择的风险。但是使用报表的业务人员没有形成对这些风险(机会)的认知,就造成了缺乏对该报表的数据解读能力,该报表便成为了一个花瓶报表,价值无法得到体现。
针对这一类报表,我的建议是场景化,让每一张报表背后都有它的风险机会描述,当自我不能解读的报表,也就不要指望业务可以解读并使用,并不是将一堆的指标都进行展示就能产生价值,它于落地的应用还相隔甚远。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27