
大数据助推智慧政务发展
作为未来型政务发展的新形态,智慧政务充分运用大数据等信息通信新技术,整合网上网下与政务相关的各项数据信息,对相关需求进行分析判断、科学决策,作出智能回应,并不断评价政策运行效果,改进决策。
在全球范围内,运用大数据推动智慧政务正成为趋势,智慧政务以大数据分析为核心,不仅是因为相关数据量大、类型多,更重要的是,对海量数据的深度挖掘与多维剖析可以创造出更大的公共价值,有利于更准确地掌握政务动态变化,发现公众新需求,有效提升政务服务能力。
智慧政务与传统政务的根本区别是能借助大数据分析技术实现智慧感知,全面、精准、及时了解公众的多样化需求,并作出针对性响应,实现良性互动,以有效决策。在智慧感知公众需求的基础上,采用大数据分析评价技术对政策的执行对象、执行过程、执行效果和既定目标、社会预期、意见反馈、态度情绪等相关数据进行实时全面的动态分析,实现智慧评价,并提出调整建议。在智慧评价的基础上,运用大数据分析技术,确定政策改进和调整方向,实现智慧决策。利用大数据技术快速发现服务管理短板,有针对性地进行优化改进,实现智慧管理服务。同时,在信息搜索渠道和移动终端等方面做好适应性技术改造,提高信息发现的概率,实现智慧传播,满足公众的各种信息需求。
大数据是国家的重要基础设施和战略资源。随着大数据技术的广泛运用,政务服务模式日趋集成化,借助政务大数据平台把政务相关信息数据化和集成化,不断完善和优化政务服务信息系统,统筹建立相关信息库。通过整合建设数据共享交换平台,实现政务信息资源的跨部门、跨层级、跨区域互联互通、线上线下融合和协同共享,破除“信息孤岛”和“数据壁垒”,在服务层面实行“一站式”无缝整合,推进政务实体大厅、网上大厅、移动应用等多渠道相结合,由“信息多跑,百姓少跑”来实现“信息惠民”,解决公众和企业办事难、办事慢的问题,营造宜居安商的政务服务环境。
大数据作为变革的手段,将引领政务服务转型升级。促成政务服务理念转变和工作流程再造,重塑政务服务工作机理与生态,对相关数据进行有效整合关联,深挖和探究更利企便民的服务方式,由粗放式服务转向精准化定制服务,变被动服务为主动服务。在化解公众“找谁办”、“去哪办”、“怎么办”疑惑的同时,更好地满足公众个性化、定制化及多样化的政务服务需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13